# **OP 121TT**

#### CARACTÉRISTIQUES

- Flux aggloméré basique pour le soudage en multipasses.
- Grande constance des valeurs de résilience à basse température et de CTOD.
- Convient aux systèmes à arc mono et multiple

#### **APPLICATIONS TYPIQUES**

- Industrie offshore
- Appareils à pression

#### CLASSIFICATION

| Flux             | EN ISO 14174: SA FB 1 55 AC H5 |                      |  |  |
|------------------|--------------------------------|----------------------|--|--|
|                  |                                |                      |  |  |
| Flux/fil         | AWS A5.17                      | AWS A5.23            |  |  |
| OE-S2            | F7A6/F6P8-EM12K                |                      |  |  |
| OE-SD3           | F7A8/F7P8-EH12K                |                      |  |  |
| OE-S2Mo          |                                | F8A4/F8P4-EA2-A2     |  |  |
| OE-SD3Mo         |                                | F8A6/F8P6-EA4-A4     |  |  |
| OE-S2 Ni2        |                                | F7A10/F7P10-ENi2-Ni2 |  |  |
| OE-SD3 1Ni 1/4Mo |                                | F8A10/F8P10-ENi5-Ni5 |  |  |
| OE-SD3 1Ni 1/2Mo |                                | F9A8/F9P8-EF3-F3     |  |  |
| OE-SD3 2 NiCrMo  |                                | F11A8/F11P5-EG-G     |  |  |
| OE-S2 CrMo1      |                                | F8P4-EB2R-B2         |  |  |
| OE-S1 CrMo2      |                                | F8P2-EB3R-B3         |  |  |
| OE-TIBOR22       |                                | F7A8-EG-G            |  |  |
| OE-TIBOR33       |                                | F8A6-EA2TiB-G        |  |  |

### ANALYSE CHIMIQUE TYPIQUE DU MÉTAL DÉPOSÉ (%)

| <u>.</u>         | <u> </u> | -   |     |     |      |     |       |        |
|------------------|----------|-----|-----|-----|------|-----|-------|--------|
| Nuance de fil    | С        | Mn  | Si  | Cr  | Ni   | Мо  | Ti    | В      |
| 0E-S2            | 0.07     | 0.9 | 0.2 |     |      |     |       |        |
| OE-SD3           | 0.07     | 1.6 | 0.3 |     |      |     |       |        |
| OE-S2Mo          | 0.07     | 0.9 | 0.2 |     |      | 0.5 |       |        |
| OE-SD3Mo         | 0.07     | 1.3 | 0.2 |     |      | 0.5 |       |        |
| OE-S2 Ni2        | 0.06     | 0.9 | 0.2 |     | 2.1  |     |       |        |
| OE-S2 Ni3        | 0.06     | 0.9 | 0.2 |     | 3.3  |     |       |        |
| OE-SD3 1Ni 1/4Mo | 0.07     | 1.3 | 0.3 |     | 0.9  | 0.2 |       |        |
| OE-SD3 1Ni 1/2Mo | 0.07     | 1.5 | 0.3 |     | 0.95 | 0.5 |       |        |
| OE-SD3 2NiCrMo   | 0.07     | 1.4 | 0.4 | 0.6 | 2.2  | 0.5 |       |        |
| OE-S2 CrMo1      | 0.07     | 0.9 | 0.3 | 1.1 |      | 0.5 |       |        |
| OE-S1 CrMo2      | 0.08     | 0.6 | 0.3 | 2.2 |      | 1   |       |        |
| OE-TIBOR22       | 0.06     | 1   | 0.1 |     |      | 0.3 | 0.013 | 0.0010 |
| OE-TIBOR33       | 0.07     | 1.2 | 0.3 |     |      | 0.5 | 0.15  | 0.012  |



OP 121TT-FR-15/03/23

# PROPRIÉTÉS MÉCANIQUES DU MÉTAL DÉPOSÉ

| Numan de fil     | Cdiri*                    | Limite élastique | Résistance à la rupture | Allongement | Résilience ISO-V (J) |       |       |
|------------------|---------------------------|------------------|-------------------------|-------------|----------------------|-------|-------|
| Nuance de fil    | Condition*                | (MPa)            | (MPa)                   | (%)         | 0°C                  | -40°C | -60°C |
| OE-S2            | AW                        | ≥405             | 480-550                 | ≥28         | ≥160                 | ≥50   |       |
| OE-SD3           | AW                        | ≥460             | 530-630                 | ≥25         | ≥180                 | ≥100  | ≥70   |
| OE-SD3           | PWHT 600°C/2h             | ≥400             | 490-590                 | ≥27         | ≥200                 | ≥120  | ≥90   |
| OE-SD2 Mo        | AW                        | ≥470             | 550-680                 | ≥24         | ≥120                 | ≥50   |       |
| OE-SD3Mo         | AW                        | ≥550             | 610-670                 | ≥29         |                      | ≥110  | ≥80   |
| OE-SD3Mo         | PWHT 620°C/1h             | ≥520             | 600-660                 | ≥27         |                      | ≥130  | ≥60   |
| OE-S2 Ni2        | AW                        | ≥420             | 500-600                 | ≥24         | ≥140                 | ≥100  | ≥70   |
| OE-S2 Ni2        | PWHT 600°C/2h             | ≥380             | 470-550                 | ≥26         | ≥160                 | ≥130  | ≥100  |
| OE-S2 Ni3        | AW                        | ≥480             | 560-660                 | ≥25         | ≥160                 | ≥130  | ≥100  |
| OE-SD3 1Ni 1/2Mo | AW                        | ≥550             | 650-750                 | ≥20         | ≥120                 | ≥70   | ≥47   |
| OE-SD3 1Ni 1/2Mo | PWHT 600°C/2h             | ≥540             | 630-730                 | ≥22         | ≥140                 | ≥90   | ≥70   |
| OE-SD3 1Ni 1/4Mo | AW                        | ≥500             | 560-680                 | ≥22         |                      | ≥145  | ≥70   |
| OE-SD3 1Ni 1/4Mo | PWHT 600°C/2h             | ≥470             | 550-660                 | ≥24         |                      | ≥160  | ≥70   |
| OE-SD3 2NiCrMo   | AW                        | ≥720             | 760-900                 | ≥18         |                      |       | ≥69   |
| OE-SD3 2NiCrMo   | PWHT 580°C/2h             | ≥600             | 700-850                 | ≥19         |                      | ≥47   |       |
| OE-S2 CrMo1      | PWHT 680°C/2h             | ≥380             | 530-630                 | ≥24         | ≥180                 |       |       |
| OE-S2 CrMo1      | PWHT 920 °C/air+710<br>°C | ≥310             | 430-530                 | ≥30         | ≥200                 |       |       |
| OE-S1 CrMo2      | PWHT 720°C/8h             | ≥450             | 550-650                 | ≥22         | ≥100                 |       |       |
| OE-S1 CrMo2      | PWHT 940 °C/air+740<br>°C | ≥400             | 520-620                 | ≥22         | ≥90                  |       |       |
| OE-TIBOR22       | AW                        | ≥430             | 500-650                 | ≥20         |                      |       | ≥50   |
| OE-TIBOR33       | AW                        | ≥530             | 580-700                 | ≥20         |                      | ≥50   |       |

<sup>\*</sup> AW = Brut de soudage; PWHT = après traitement thermique

## CARACTÉRISTIQUES DU FLUX

| Type de courant              | AC; DC+        |  |  |  |
|------------------------------|----------------|--|--|--|
| Basicité (Boniszewski)       | 3.1            |  |  |  |
| Granulométrie (EN ISO 14174) | 2-20           |  |  |  |
| Réétuvage                    | 300-350°Cx2-4h |  |  |  |

#### CONDITIONNEMENT

| Conditionnement | Poids<br>(kg) | Référence  |  |  |
|-----------------|---------------|------------|--|--|
| DDV DAC         | 25.0          | W000280042 |  |  |
| DRY BAG         | 1000.0        | W000412642 |  |  |
| BIG BAG         | 400.0         | W000280044 |  |  |



#### **RÉSULTATS DES TESTS**

Les résultats des essais concernant les propriétés mécaniques, le dépôt ou la composition de l'électrode et les niveaux d'hydrogène diffusible ont été obtenus à partir d'un moule produit et testé selon les normes prescrites, et ne doivent pas être considérés comme les résultats attendus dans une application soudée particulière. Les résultats varieront en fonction de nombreux facteurs, y compris mais sans s'y limiter, de la procédure de soudage, de la composition chimique et de la température de la tôle, de la configuration de l'assemblage et des méthodes de fabrication. Les utilisateurs sont priés de confirmer, par un test de qualification, ou autre moyen approprié, l'adéquation de tout métal d'apport et procédure de soudage avant de l'utiliser dans l'application prévue.

Les fiches de données de sécurité (SDS) sont disponibles ici:



Les informations contenues dans la présente publication sont exactes en l'état actuel de nos connaissances à la date d'impression. Veuillez vous référer à <a href="https://www.lincolnelectric.fr">www.lincolnelectric.fr</a> pour toute information mise à jour.

