

Fils INNERSHIELD®

SOLUTION HAUTE PRODUCTIVITÉ

CATALOGUE COMPLET POUR RÉPONDRE À L'ENSEMBLE DES APPLICATIONS

SOLUTION
COMPLÈTE POUR
TRAVAILLER AVEC
INNERSHIELD®

GAMME COMPLÈTE D'EPI POUR VOTRE PROTECTION

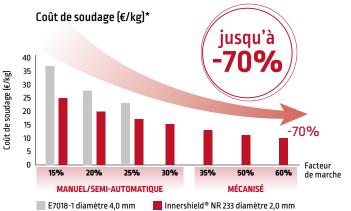
DES OFFRES
DE MATÉRIEL
QUI RÉPONDENT
À VOS
BESOINS

CHANTIERS / ATELIERS

ATELIERS

CHARIOTS
AUTO-PORTEURS
POUR SOUDAGE
MÉCANISÉ TOUTES
POSITIONS

LA TECHNOLOGIE CROSSLINC® POUR RÉGLER LES PARAMÈTRES DE SOUDAGE À PARTIR DU DÉVIDOIR



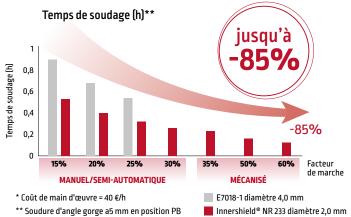


TABLE DES MATIÈRES

A SOLUTION IDEALE POUR LE SOUDAGE EN EXTERIEUR	4
LE PROCÉDÉ	6
PROCÉDÉ SÛR ET FIABLE	7
GAMME INNERSHIELD®	8
CRITÈRES DE SÉLECTION	11
MATÉRIEL ET ACCESSOIRES	12
APPLICATIONS INDUSTRIELLES	1/

INNERSHIELD® – LA SOLUTION IDÉALE POUR LE SOUDAGE EN EXTÉRIEUR PAR RAPPORT AU PROCÉDÉ ÉLECTRODE ENROBÉE

AVANTAGES INNERSHIELD® PAR RAPPORT A L'ÉLECTRODE ENROBÉE

- Procédé continu
- Temps d'arc et facteur de marche accrus
- Taux de dépôt accrus
- Productivité accrue
- Moins d'arrêts et de réamorçages
 moins de défauts

APPLICATION MATÉRIAU DE BA	ACF. COFF			
Épaisseur: 10 mr		PB (2F)	EE basique 7018-1	Innershield® NR-233
Conditions de soudage			manuel	semi-automatique
PROCÉDÉ	Courant	[A]	140-180	240-250
PROCEDE	Diamètre	[mm]	4,0	1,6
	Taux de dépôt	[kg/h]	1,7	2,7
	ÉTUDE DE COÛT POUR 1	000 MÈTRES D	E SOUDURE PA	RAN
	Fil	[€/kg]	3	15,00
COÛT DE	Rendement	[%]	0,65	0,80
COÛT DE SOUDAGE	Poids au mètre soudé	[kg/m]	0,23	0,23
JOODAGE	Coût au mètre soudé	[€/m]	1,1	4,3
	Coût total	[€/kg]	5	19
	Coût de main d'œuvre	[€/h]	40	40
COÛT DE	Facteur de marche	[%]	18	25
PRODUCTION	Poids au mètre soudé	[kg/m]	0,23	0,23
PRODUCTION	Durée au mètre soudé	[h/m]	0,75	0,34
	Coût au mètre soudé	[€/m]	31	18
	Temps de soudage total	(h)	752	341 🔾
	Coût total	(€)	31,127	17,942 🔘

RENDEMENT
+23%
TAUX DE éc
DÉPÔT bou

économie pour **1 km** de soudure

ÉCONOMIES

TEMPS -**55%** (-51 jours)

+58%

COÛT **-42%** (-13 000 €)

Contactez-nous pour calculer votre RSI

LE PROCÉDÉ INNERSHIELD® VOUS PERMET DE RÉDUIRE LES COÛTS ET LE TEMPS DE SOUDAGE

POUR PLUS DE PRODUCTIVITÉ, PASSEZ DE L'ÉLECTRODE AU FIL FOURRÉ. CHOISISSEZ INNERSHIELD® SI...

L'UTILISATION DE BOUTEILLES POSE DES PROBLÈMES LIÉS À L'UTILISATION DU GAZ

- Approvisionnement du mélange de gaz correct
- Livraison régulière de bouteilles sur le terrain
- Manutention sécurisée des bouteilles de gaz
- Stockage protégé
- Maintenance régulière des tuyaux et des détendeurs (perte d'argent/de temps, fuites de gaz, personne dédiée responsable)

> LE VENT **REPRÉSENTE** UN PROBLÈME

INNERSHIELD® PERMET:

- un soudage avec du vent jusqu'a 50 km/h et des caractéristiques d'utilisation favorables sans perdre ses propriétés mécaniques
- Moins de défauts tels que porosités et soufflures débouchantes
- De limiter l'investissement dans des barrières pour protéger le soudage du vent

AVANTAGES DE L'INNERSHIELD®

- Plus de coûts de location de bouteilles de gaz.
- Coûts de maintenance réduits : torche et dévidoir plus simples.
- Pas de protection du soudage au vent.
- Les fils Innershield® sont caractérisés par un excellent dévidage, une bonne pénétration en racine et permettent l'utilisation de longs stick out pour les chanfreins étroits.
- Les fils Innershield® acceptent mieux que les fils pleins les contaminants de surface, tels que la calamine, la rouille ou les revêtements.

INNERSHIELD® - LE PROCÉDÉ

La société Lincoln Electric a inventé le procédé Fil Fourré sans gaz en 1958, avec la ligne d'électrodes Innershield® (fils Innershield®). Innershield® est un procédé important pour la fabrication dans de nombreuses industries, en particulier lorsque celle-ci se fait sur chantier. Il s'agit d'un procédé de soudage simple pour la construction de bâtiments.

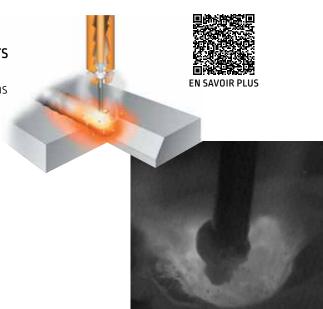
APPLICATIONS TYPIQUES

- · Structures en acier
- · Industrie offshore
- · Construction navale
- · Maintenance sur chantier
- Pipelines
- · Fabrication en tôles épaisses
- · Tôlerie
- · Fabrication générale
- · Soudage de rails
- · Travaux de bricolage

Tous les fils Innershield® sont classés d'après la norme EN ISO 17632 et conviennent pour souder les structures en acier conformément à la norme EN 1090

Lorsque cela est requis:

- les soudeurs doivent être qualifiés conformément à la norme EN 287-1; une formation d'une semaine est recommandée pour maîtriser la technique.
- La procédure de soudage doit être qualifiée conformément à la norme EN ISO15614-1. *
- *Lincoln Electric peut apporter un soutien pour la formation du soudeur et la qualification des procédures.


- · de 1,6 à 3,0 mm
- certains sont disponibles dans des diamètres inférieurs :
 0,9 mm à 1,2 mm

DISPONIBLE EN PLUSIEURS FORMATS

- · de 0,4 kg à 22,7 kg
- · bulks & drums 227 kg, 273 kg

DISPONIBLE EN PLUSIEURS FORMULES POUR :

- · acier non ou faiblement allié
- position à plat et en corniche uniquement ou toutes positions

PRINCIPAUX TYPES D'INNERSHIELD®*

	4,5	kg	5,7 kg		6,4	kg	1	1,3 k	g	2	2,7 k	g
	,		DISPON						_		,	
Innershield® NR®-211-MP	0,9	1,1		1,7	7	2,0	0,9	1,1	1,7	1,7	2,	,0
Innershield® NR®-233			1,6					1,6				
Innershield® NS-3M			2,4		2,0)				2,4	3,	,0
Innershield® NR®-311Ni							2,4	2	2,8			
Innershield® NR®-203Ni1											2,0	
Innershield® NR®-440Ni2										1,6	2,	,0
Innershield® NR®-555							1,6	2	2,0			
Pipeliner® NR-208-XP				1,7	7	2,0						
Innershield® NR®-232				1,7	1,8	2,0	1,7	1,8	2,0	1,7	1,8	2,0
Innershield® NR®-232-H							1,7		1,8			
Innershield® NR®-305										1,7	2,0	2,4

^{*}Liste non-exhaustive. Plus de fils disponibles sur www.lincolnelectric.eu

CONTRÔLE QUALITÉ

Innershield® est un procédé largement utilisé dans le monde entier, pour une grande variété d'applications. Les fils Innershield® font l'objet d'un contrôle qualité rigoureux dans la production, pour obtenir des performances cohérentes.

Les fils Innershield® sont approuvés par des tiers tels que ABS, DNV, LRS (voir fiche de données du produit pour plus de détails).

Certains produits Innershield® sont utilisés pour la construction de bâtiments dans les régions sismiques des États-Unis, où les exigences rigoureuses du AWS D1.1 Structural Welding Code-Steel et du D1.8 Seismic Welding Supplement s'appliquent.

Produit: Innershield® NR®-233

Classement: E71T-8-H8

E71T8-A2-CS3-H8

AWS A5,20:2005, ASME SFA-5,20 Spécification :

AWS A5,36:2016, ASME SFA-5,36

Réglages de fonctionnement	E71T-8-H8 Exigences	RÉSULTATS
Taille requise pour classement	1/16 in	1/16 in (1,6 mm)
Type de courant/Polarité	DC-	DC-
Vitesse de dévidage du fil, cm/min (in/min)		622 (245)
Tension nominale, V		23
Courant nominal, A		270
Apport de chaleur moyen, kJ/mm (kJ/in)	(25-55)	1,3 (32,5)
Vitesse de déplacement, cm/min (in/min)		29 (11,46)
Distance Tube contact – Pièce, mm (in)		22 (7/8)
Passe/Couches		20/6
Température de préchauffage, °C (°F)	(60 min.)	25 (73)
Température passe intermédiaire, °C (°F)	(325 max.)	165 (325)
Traitement thermique après soudage	État brut de Soudage	État brut de Soudage

Réglages de fonctionnement	E71T-8-H8 Exigences	RÉSULTATS
Taille requise pour classement	1/16 in	1/16 in (1,6 mm)
Type de courant/Polarité	DC-	DC-
Vitesse de dévidage du fil, cm/min (in/min)		622 (245)
Tension nominale, V		23
Courant nominal, A		270
Apport de chaleur moyen, kJ/mm (kJ/in)	(25-55)	1,3 (32,5)
Vitesse de déplacement, cm/min (in/min)		29 (11,46)
Distance Tube contact – Pièce, mm (in)		22 (7/8)
Passe/Couches		20/6
Température de préchauffage, °C (°F)	(60 min.)	25 (73)
Température passe intermédiaire, °C (°F)	(325 max.)	165 (325)
Traitement thermique après soudage	État brut de Coudage	État brut de Coudage

Propriétés mécaniques du métal déposé		
Rm, MPa (ksi)	(70-90)	580 (84)
Rp 0,2%, MPa (ksi)	(58 min.)	450 (65)
Allongement %	22 min.	26
KCV	(20 min.)	49 (36)
Joules @ -29°C (ft-lbs @ -20°F)		48, 49, 50 (35, 36, 37)
Dureté moyenne, HRB	Info. Uniquement	87

Composition chimique du métal déposé (poids	%]	
С	0,30 max.	1,7
Mn	1,75 max.	0,65
Si	0,60 max.	0,21
S	0,03 max.	0,00
Р	0,03 max.	0,01
Al	1,8 max.	0,7
Hydrogène diffusible (selon AWS A4,3)	E71T-8-H8 Exigences	RÉSULTATS
Taille requise nour classement		1/16 in (1.6 mm)

Hydrogène diffusible (selon AWS A4,3)	E/11-8-H8 Exigences	RÉSULTATS
Taille requise pour classement		1/16 in (1,6 mm)
Type de courant/Polarité		DC-
Tension nominale, V		23
Courant nominal, A		291
Hydrogène diffusible, ml/100g	8,0 max.	3,9
Humidité Abs. (gr humidité/lb air sec)		76

Produit: Innershield® NR®-440Ni2

Classement: E71T8-Ni2-JH8

E71T8-A4-Ni2-H8

Spécification : AWS A5,29:2010, ASME SFA-5,29

AWS A5,36:2016, ASME SFA-5,36

Réglages de fonctionnement	E71T8-Ni2-JH8 Exigences	RÉSULTATS
Taille requise pour classement	1/16 in	1/16 in (1,6 mm)
Type de courant/Polarité	DC-	DC-
Tension nominale, V		20
Courant nominal, A		200
Vitesse de dévidage du fil, cm/min (in/min)		330 (130)
Apport de chaleur moyen, kJ/mm (kJ/in)	(25-55)	1,6 (40)
Vitesse de déplacement, cm/min (in/min)		15 (5,93)
Distance Tube contact – Pièce, mm (in)		22 (7/8)
Passe/Couches		16/8
Température de préchauffage, °C (°F)	(275-325)	135 (275)
Température passe intermédiaire, °C (°F)	(275-325)	135 (275)
Traitement thermique après soudage	État brut de Soudage	État brut de Soudage

Propriétés mécaniques du métal déposé		
Rm, MPa (ksi)	(70-90)	550 (79)
Rp 0,2%, MPa (ksi)	(58 min.)	460 (67)
Allongement %	20 min.	27
KCV	(20 min.)	338 (249)
Joules @ -40°C (ft-lbs @ -40°F)		241, 353, 420 (178, 260, 310)
Dureté moyenne, HRB	Info. Uniquement	82

Composition chimique du métal déposé (poids %)				
С	0, 12 max.	0,02		
Mn	1,50 max.	1,06		
Si	0,80 max.	0,18		
S	0 030 max.	<0,003		
Р	0 030 max.	0,010		
Ni	1,75-2,75	1,94		
Al	1,8 max.	0,8		

Hydrogène diffusible (selon AWS A4,3)	E71T8-Ni2-JH8 Exigences	RÉSULTATS
Taille requise pour classement		1/16 in (1,6 mm)
Type de courant/Polarité		DC-
Tension nominale, V		19
Courant nominal, A		178
Hydrogène diffusible, ml/100g	8,0 max.	5,3
Humidité Abs. (gr humidité/lb air sec)		65

PRODUITS PRINCIPAUX

Acier non allié – soudage toutes positions

Applications

· Tôles fines

· Tôles galvanisées

· Fabrication générale

· Robotique / automatisation

Innershield® NR®-211-MP

- Possibilité de soudage sur une large variété de matériaux de base
- Facilité d'utilisation et bonne apparence du cordon
- Élimination facile du laitier
- Les caractéristiques de solidification rapide du laitier permettent de compenser les mauvaises préparations
- Limité aux tôles de 12 mm d'épaisseur maximum

Spécifications

Classi	ements	Agrómants			Chimie			Pi	ropriétés	mécaniques
AWS A5,36	EN ISO 17632-B	Agréments	С	Mn	Si	S	Р	Rp0,2	Rm	Allongement (%)
E71T-11-AZ-CS3	T49ZT11-1NA-H15	CE, ABS, CWB, TUV, DB	0,21	0,65	0,25	0,003	≤0,010	450	610	22

Innershield® NR®-233

- Une nouvelle conception du NR®-233 permet d'améliorer le dévidage et la stabilité de l'arc éléctrique.
- Taux de dépôts élevés en soudage toutes positions
- Répond aux critères de AWS D1.8
- Contrôle de l'arc facilité et maîtrise du bain de fusion en toute position quelque soit le niveau du soudeur

DC

Applications

- Fabrication générale ou anti-sismique avec des aciers de construction
- · Fabrications navales et barges
- Soudures bout à bout ou en angle en position plafond ou en verticale montante

Spécifications

Class	sements				Chimie					Propriétés mécar	niques
AWS A5,36	EN ISO 17632-B	Agréments	С	Mn	Si	S	Р	Rp0,2	Rm	Allongement (%)	Impact ISO-V (J) -29°C
E71T8-A2-CS3-H8	T 49 3 T8-1 N A-UH10	CE, ABS, AWS D1,8,JIS Z 3313	0,15-0,20	0,61-0,65	0,17-0,21	≤0,03	≤ 0,01	435-455	575-595	22	34-54

Acier faiblement allié – soudage toutes positions

Innershield® NR®-203 Nickel (1%)

- Conçu pour déposer un métal contenant du Nickel
- Métal déposé présentant des résiliences supérieures à 27 J à 29°C
- Couleur compatible à celle des aciers résistant à la corrosion atmosphérique
- Absorbe les mauvaises préparations
- Adapté au soudage en racine

Applications

- Soudures de structures tubulaires à parois épaisses
- · Offshore
- Ponts et sous-ensembles de structures fabriqués à partir d'aciers résistant à la corrosion atmosphérique
- $\cdot \, \text{Fabrication de structures} \,$
- · Applications NACE

Spécifications

Classen	nents	Agréments			Ch	imie					Propriétés méca	niques
AWS A5,36	EN ISO 17632-A	Agrements	С	Mn	Si	Ni	S	Р	Rp0,2	Rm	Allongement (%)	Impact ISO-V (J) -29°C
E71T8-A2-Ni1-H16	T42 3 1Ni Y N	CE, DNV, CWB, DB, TUV,	0,08	1,1	0,27	0,9	0,003	0,008	465	540	26	115

Innershield® NR®-555

- Résiliences de 100J@-50°C
- Fil Fourré auto-protecteur, conçu pour le soudage de structures
- Utilisation facile pour le soudeur avec des cordons plats sur soudures d'angle et sur bout à bout en toutes positions
- Répond aux critères d'exemption pour les lots anti-sismiques selon l'AWS D1.8
- L'emballage en sachet ProTech® protège le fil contre l'humidité, la formation de rouille et prolonge la durée de stockage

Applications

- $\cdot \, \mathsf{Structures} \,$
- · Fabrication générale

Spécifications

-pj											0.70	FO OFFICE STATES AND ADDRESS.
Classe	ements	Agrámants	Chimie								Propriétés méca	aniques
AWS A5,36	EN ISO 17632-A	Agréments	С	Mn	Si	Ni	S	Р	Rp0,2	Rm	Allongement (%)	Impact ISO-V (J) -29°C
E81T8-A5-K8-H	T46 5 Z Y N 1 H10	CE, AWS D1,8	0,05	1,84	0,17	1,12	0,001	0,011	550	630	25	54

Acier faiblement allié - soudage à plat et en corniche

Innershield® NR®-311Ni

- Conçu pour le soudage de tubes épais avec des jeux jusqu'à 9,5 mm et des décalages jusqu'à 6,4 mm
- Laitier à solidification rapide avec un enlèvement facile après soudage
- Possibilité de soudage en racine sans latte support

- · Soudures en angle et à clin
- · Soudures bout a bout sans chanfrein en corniche et telles que les raccords structuraux colonne sur colonne
- · Soudures en chanfrein profond
- · Fabrication de structures
- Aciers résistant à la corrosion atmosphérique

Spécifications

Classeme	nts	Agrámonto			Chimie					Propriétés mécanio	ues	
AWS A5,36	EN ISO 17632-B	Agréments	С	Mn	Si	S	Ni	Rp0,2	Rm	Allongement (%)	Impact ISO-V (J) -29°C	
E70T7-A2-K2-H16, E80TG-A2-K2-	T42 2 1,5Ni W N 5	ABS, LR, DNV, BV, DB, AWS D1,8, CE	0,06-0,08	1,25-1,40	0,18-0,22	≤0,003	1,29-1,56	470-515	575-615	27-30	41-87	

Acier non allié – soudage toutes positions, sauf verticale descendante

Innershield® NR®-232

- Taux de dépôt jusqu'à 3 kg/h, toutes positions
- Excellente résistance aux chocs à basse température
- Idéal pour le soudage et le remplissage d'angles
- Pour soudage monopasse ou multipasse
- Le diamètre 1,7 mm, convient pour les tôles sâles ou pré-peintes

Applications

- Fabrication de structures, y compris les fabrications soumises aux exigences sismiques
- · Fabrication générale
- Soudage de panneaux et raidisseurs sur les navires et les barges
- Pièces de machines, réservoirs, trémies, crémaillères et échafaudages

Spécifications

Classeme	ents	Agrámanta			Chi	mie					Propriétés mécan	iques
AWS A5,20 / AWS A5,36	EN ISO 17632-A	Agréments	С	Mn	Si	S	Р	Al	Rp0,2	Rm	Allongement (%)	Impact ISO-V (J) -29°C
E71T-8 F71T8-A2-CS3-H16	T 42 3 Y N 2 H15	ABS, BV, DNV, LR, TÜV,	0,18	0,65	0,27	0,004	0,006	0,55	440	570	26	27-35

Innershield® NR®-232-H

- Taux de dépôts élevés pour soudage toutes positions
- Arc pénétrant
- Laitier à solidification rapide avec un excellent nettoyage après soudage
- Niveau d'hydrogène diffusible inférieur à celui du NR-232

Applications

- Fabrication de structures, y compris les fabrications soumises aux exigences sismiques
- · Fabrication générale
- Soudage de panneaux et raidisseurs sur les navires et les barges
- Pièces de machines, réservoirs, trémies, crémaillères et échafaudages

Spécifications

Classeme	nts	Agrámants			Chi	mie					Propriétés mécaniques		
AWS A5,20 / AWS A5,36	EN ISO 17632-A	Agréments	С	Mn	Si	S	Р	Al	Rp0,2	Rm	Allongement (%)	Impact ISO-V (J) -29°C	
E71T-8-H8 E71T8-A2-CS3-H8	T 42 2 Y N 2 H10	CWB	0,18	0,65	0,27	0,004	0,006	0,55	460-520	575-615	25-31	47-75	

Innershield® NR®-305

- NR-305 est un fil fourré auto-protecteur
- Ne convient pas pour le soudage toutes positions, mais peut être utilisé pour des applications en verticale descendante à 15° max et en verticale montante à 5° max
- Taux de dépôt et vitesse de soudage élevés
- Mise en œuvre facile
- Conseillé pour un soudage à plat avec une productivité maximale

Applications

- · Fabrication générale
- · Fabrication de structures, y compris les fabrications soumises aux exigences sismiques
- Chantiers navals, soudage de raidisseur sur barges
- Ponts et plateformes offshore
- Soudage sur pointages réalisés à l'électrode enrobée

Spécifications

Classements			Chi	mie					Propriétés mécani	iques
AWS A5,20 / AWS A5,36	С	Mn	Si	S	Р	Al	Rp0,2	Rm	Allongement (%)	Impact ISO-V (J) -29°C
E70T-6-H16 E70T6-A2-CS3-H16	0,09	0,9	0,2	0,008	0,007	0,80	470	550	24-28	27-40

INNERSHIELD® POUR LES APPLICATIONS SPÉCIALES: OFFSHORE, RAIL,

PIPELINE

Innershield® NS-3M

- Possibilité de soudage sur une large variété de matériaux de base
- Facilité d'utilisation pour le soudeur et bonne apparence du cordon
- Élimination facile du laitier
- Les caractéristiques de solidification rapide du laitier permettent de compenser les mauvaises préparations

Spécifications

Classeme	ents	Agrámants			Chimie			Pi	ropriétés m	iécaniques
AWS A5,20 / AWS A5,36	EN ISO 17632-A	Agréments	С	Mn	Si	S	Р	Rp0,2	Rm	Allongement (%)
E70T-4	T38 Z V N 3	CE, CWB, DB	0,15-0,20	0,61-0,65	0,17-0,21	≤0,03	≤ 0,01	415-450	580-620	25-28

⇒ OFFSHORE

Innershield® NR®-440Ni2

- Conçu pour une soudabilité optimale dans des joints étroits de forme T, K ou Y avec mauvaise préparation
- Vitesse de soudage élevée et cordon plat en position de soudage verticale montante ou descendante
- Résiliences à basses températures répondant aux critères de classement ABS 4YSA et AWS J
- Hydrogène diffusible classé H8

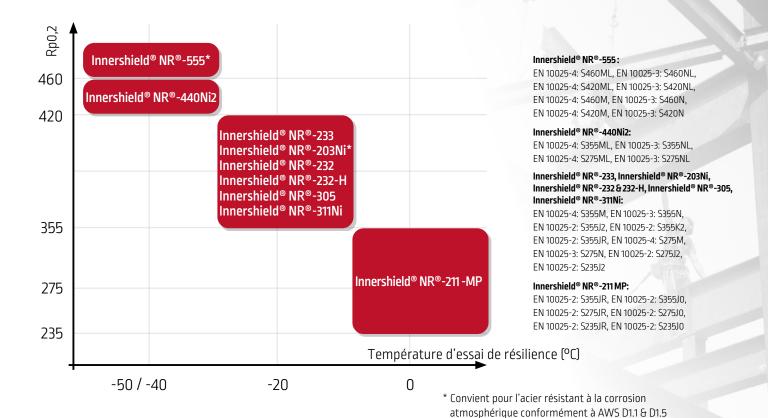
Spécifications

Classements	Agréments			С	himie	Propriétés mécaniques							
AWS 5,29	Agrements	С	Mn	Si	Ni	S	Р	Rp0,2	Rm	Allongement (%)	Impact ISO-V (J) -40°C		
F71T8-Ni2-JH8	ABS, DNV. LR	0.01-0.03	0.74-1.12	0.13-0.17	1.77-2.10	0.002-0.004	0.007-0.012	400-485	490-570	22-36	215-460		

➡ PIPELINE

Pipeliner® NR®-208-XP

- Adapté au soudage en verticale descendante, pour les passes de remplissage et de finition de tubes de nuances allant jusqu'au X80
- Métal déposé avec des résiliences moyennes dépassant 120J à -40°C


Spécifications

Classements			Chimie				1	Propriétés mécaniq	ues
AWS A5,36	С	Mn	Si	S	Р	Rp0,2	Rm	Allongement (%)	Impact ISO-V (J) -40°C
E81T8-A4-K12	≤0.02	2.10-2.20	0,12-0,13	< 0.003	0.004-0.007	500-550	575-615	21-28	88-143

CRITÈRES DE SÉLECTION INNERSHIELD®

SÉLECTION BASÉE SUR LES PROPRIÉTÉS MÉCANIQUES DES ACIERS DE CONSTRUCTION

¹F 1G PΑ PA 2F 2G PB PC 3F montante montante /descendante /descendante PF PF PG PG 4F 4G PD PE

SÉLECTION BASÉE SUR LA POSITION DE SOUDAGE :

Produit Position de soudage Toutes, sauf verticale Innershield® NR®-233 descendante Innershield® NR®-203Ni Toutes Innershield® NR®-440Ni2 Toutes Innershield® NR®-555 **Toutes** Innershield® NR®-211-MP Toutes, sauf verticale montante Innershield® NR®-311Ni* À plat et en corniche Pipeliner® 208-XP Verticale descendante uniquement Innershield® NR -232 & 232-H Toutes, sauf verticale descendante Innershield® NR®-305* À plat et en corniche Innershield® NS-3M À plat et en corniche

^{*} Innershield® pour un taux de dépôt élevé

QUEL ÉQUIPEMENT ET QUELS ACCESSOIRES POUR SOUDER AVEC INNERSHIELD®?

GSB

Flextec® 350X

Speedtec® 180C/200C

- Multi-procédés
- Polarité facile à changer
- 220A / 1 phase
- Portable

Sortie Entrée

ACCÉDER À LA PAGE WEB

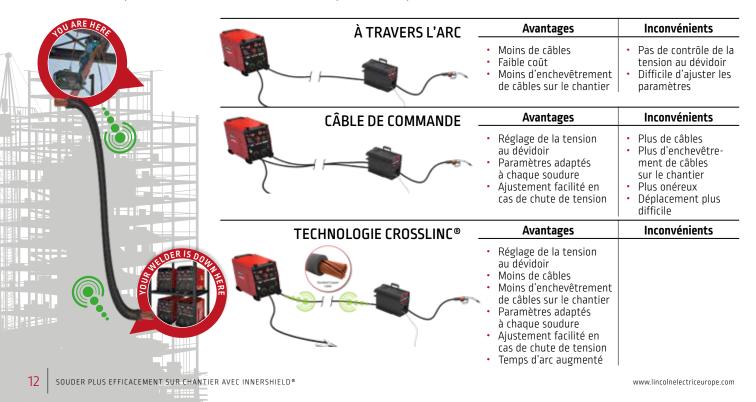
- Configuration et utilisation faciles
- Assez résistant et flexible pour être utilisé dans la plupart des applications de construction, fabrication, construction navale et autres applications à forte intensité

avec LN25X ou ACTIV8X – dévidoirs résistants. compacts et connectés:

- La technologie CrossLinc permet la commande à distance de la tension sur le dévidoir. Plus de câble de commande supplémentaire!
- La True Voltage Technology™ (TVT™) compense automatiquement les baisses de tension dans les longs câbles de soudage.

Vantage® 410 avec LN-25 PRO

- Moteur fiable : le moteur diesel 4 cylindres 1800 RPM Kubota fonctionne de façon fluide et silencieuse
- Faible bruit: 97,0 dB seulement, l'un des groupes électrogènes 400A les plus silencieux du marché.



Les dévidoirs de la technologie CrossLinc permettent de régler la tension au dévidoir, sans câble supplémentaire. Le résultat permet de renforcer la sécurité, la qualité et la productivité sur les chantiers.

LE NEC PLUS ULTRA DANS LA PROTECTION DU SOUDEUR

Flip'air LS / Zephyr LS

Masques auto-obscurcissants électroniques avec système de ventilation assistée.

Cleanspace 2[™]

Ce type de protection respiratoire unique apporte des avantages significatifs pour les travailleurs dans l'industrie.

TORCHES DÉDIÉES POUR INNERSHIELD®

Lincoln Electric propose une ligne complète de torches conçues spécifiquement pour le procédé Innershield®. Contrairement aux torches MIG-MAG, les torches Innershield® ne nécessitent pas l'utilisation du débit de gaz de protection pour dissiper la chaleur. Les torches Innershield® sont résistantes et durables, tout en étant légères. Les plus vendues parmi les torches Innershield® sont les K126TM classic et les K115.

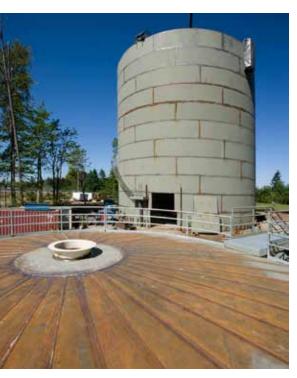
- Résistantes
- Durables
- Légères
- Facile d'utilisation

´K115&K126, ` le choix à faire pour des torches résistantes et durables

K115 450A, Ø 2,4 à 3,0

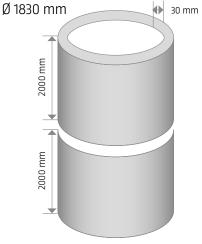
À LA PAGE WEB

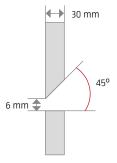
Pour raccorder la torche Innershield® au dévidoir avec un euroconnecteur, utiliser le code d'adaptateur K10343



ACCÉDER À LA PAGE WEB

APPLICATIONS INDUSTRIELLES: QUELQUES EXEMPLES


RÉSERVOIRS D'HUILE / D'EAU



Pour le soudage de gros réservoirs, afin d'augmenter la productivité du soudeur, envisagez l'utilisation de Innershield® à la place des procédés Électrodes ou MIG-MAG.

AFIN DE RÉDUIRE LE TEMPS DE SOUDAGE PAR RAPPORT AU PROCÉDÉ ÉLECTRODE, LES PALPLANCHES D'ACIER PEUVENT ÊTRE SOUDÉES AVEC INNERSHIELD®

Métal d'apport : Innershield® NR®-311Ni diam. 2,4 mm Épaisseur : 30 mm

Paramètres typiques pour soudage en position 2G en utilisant le NR-232 Innershield® diam. 1,7 mm.

Gamme d'épaisseur : 13-18 mm.

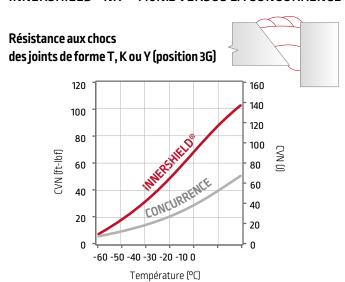
Équipement: Flextec 350, dévidoir LN 25X avec technologie crossLinc.

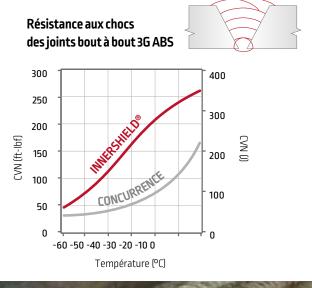
Paramètres de soudage approximatifs pour la position 2G avec mécanisation.

	Type de passe	Joint et position des passes	Polarité	Tension (V)	Vitesse de fil en m/min (Intensité en A)	Stick Out (mm)
	Fond	1	DC-	18,0-21,0	2,8-3,6 (200-250)	12-28
	Remplissage	2 2	DC-	18,0-21,0	2,8-3,6 (200-250)	12-20
i. S	Finition	3' 3	DC-	18,0-21,0	2,8-3,6 (200-250)	12-20

Type de passe	Vitesse de fil (m/min) / Intensité (A)	Tension (V)	Vitesse de soudage (cm/min)
1-4	3,8 / 310-330	26-27	45-47
remplissage	4,4 / 350-370	27-29	60-62
finition	3,2 / 270-300	21-23	50-52

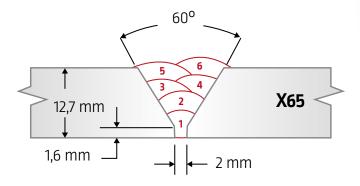
INDUSTRIE OFF SHORE


INNERSHIELD® NR®-440Ni2


Innershield® NR®-440Ni2 est le meilleur fil dans sa catégorie, principalement pour l'utilisation dans l'industrie offshore sur les joints de forme T, K ou Y et les mauvaises préparations de soudage.

- Excellentes résiliences : >200 J à -40°C dans la configuration de joint AWS
- CTOD testé jusqu'à -10°C
- Faibles niveaux d'hydrogène diffusible : correspond au niveau H5 des organismes (ABS, LRS, DNV)
- Excellente soudabilité dans toutes les positions : capacité de soudage en verticale montante et descendante
- Taux de dépôt amélioré par rapport à l'électrode enrobée

INNERSHIELD® NR®-440Ni2 VERSUS LA CONCURRENCE



PIPELINE

PIPELINER® NR-208-XP

Pipeliner® NR-208-XP est le fil Innershield® pour le soudage des pipelines, qui réduit l'hydrogène du métal déposé dans un joint du pipe, en utilisant une technique de soudage en descendant, similaire à la technique de soudage à l'électrode enrobée de type cellulosique. Idéal pour les pipelines tout-terrain.

Résultats des tests mécaniques (métal déposé, état brut de soudage)

Traction (ASTM E8) en métal fondu Diamètre 6,35 mm (0,250 in)					
	moyenne				
$R_{p0,2}[YS_{0,2\%}]$	515 MPa				
R _m (UTS)	609 MPa				
A ₄ (Allongement)	27%				
Résiliences (Charpy V) (ASTM E23) mi-paroi, 10 mm					
-29°C (-20°F)	45J				
CTOD (BS 7448 part 2) NP, SENB Bx2B					
-10°C (+14°F)	0,49mm				

LE TEMPS D'ARC RÉDUIT, L'APPORT DE CHALEUR CONTRÔLÉ ET LE FAIBLE NIVEAU D'HYDROGÈNE PEUVENT AIDER À RÉALISER DES SOUDURES SOLIDES ET AUGMENTER LA PRODUCTIVITÉ

Procédures de soudage

Passe1(Fond)	Pipeliner® 70S-G Ø 1,2 mm (ER70S-G) procédé STT Pipeliner® NR-208-XP Ø 2,0 mm (E81T8-G)		
Passe 2-6			
Passe 2 (Hot)	200A, 19,5V DC-		
Passe 3-5	200A, 19,5V DC-		
(Remplissage)			
Passe 6 (Finition)	200A, 19,5V DC-		
Position	5G, Axe horizontal fixe		
Progression	Verticale descendante toutes passes		

Taux de dépôt jusqu'à 2,0 kg/h en position PG avec Pipeliner® 208-XR Ø 2,0 mm, avec un facteur de marche supérieur à celui de l'électrode enrobée.

Soudage des patins de rail en utilisant Innershield® NS-3M Ø 2,0 mm

Soudage de l'âme de rail

Caudage de l'ême de vail

Métal d'apport conseillé pour les voies ferrées

Voie ferrée	"70" (Rm 685 N/mm²)	"90" (Rm 885 N/mm²)	
Joint	Innershield® NS-3M	Innershield® NS-3M	
Rechargement	Innershield® NS-3M	Lincore 33 Wearshield BU	

Comment souder une voie ferrée de type "70" (Rm 685 N/mm²)

Dans le cas des voies ferrées de type "90" (Rm 885 N/mm²), les 6 derniers mm doivent être soudés avec le métal d'apport de rechargement Lincore 33 (FF sans gaz) ou Wearshield BU (EE) afin de permettre une résistance appropriée à l'usage.

TRAVAUX DE MAINTENANCE, RÉPARATION, CAILLEBOTIS, CLÔTURE, RAMBARDE GALVANISÉE...

Utilisez Innershield® NRR-211-MP avec un générateur Speedtec® 180C/200C qui possède un transfert d'arc doux pour une utilisation plus simple, des projections minimales et un détachement facile du laitier.

Souder avec le fil Innershield®NR®-211-MP Ø 0,9 mm peut se faire en utilisant une torche MIG-MAG normale (LGS 150 G). Il est conseillé d'utiliser la buse appropriée (K10468) pour Innershield®.

EXEMPLES D'APPLICATIONS MÉCANISÉES

WELDYCAR ET INNERSHIELD®

Une mécanisation efficace peut permettre d'augmenter la productivité

ONSULTEZ LA PAGE WEE

EXEMPLE DE RÉDUCTION DES COÛTS EN UTILISANT INNERSHIELD® ET UNE MÉCANISATION AU LIEU DU SOUDAGE MANUEL

APPLICATION MATÉRIAU DE BASE: S275 **Épaisseur:** 12 mm EE basique Innershield® Type de joint : Angle (FW) Gorge a5 mm en PB (2F) 7018-1 NR-305 Conditions de soudage manuel mécanisé Courant [A] 140-180 320-330 PROCÉDÉ Diamètre [mm] 4 N 1,7 Taux de dépôt [kg/h] 1,7 4,6 CALCUL DES COÛTS INNERSHIELD® VS EE Fil [€/kg] 15,00 Rendement [%] COÛT 0.65 0,80 DF Poids au mètre soudé [kg/m] 0,23 0,23 SOUDAGE Coût au mètre soudé [€/m] 1,1 4,3 Coût total [€/kg] 5 19 Coût de main d'œuvre [€/h] 40 40 Facteur de marche [%] 18 60 COÛT DE PRODUCTION Poids au mètre soudé [kg/m] 0,23 0,23 Durée au mètre soudé [h/m] 0,75 0,08

[€/m]

31

8

RENDEMENT

+23%

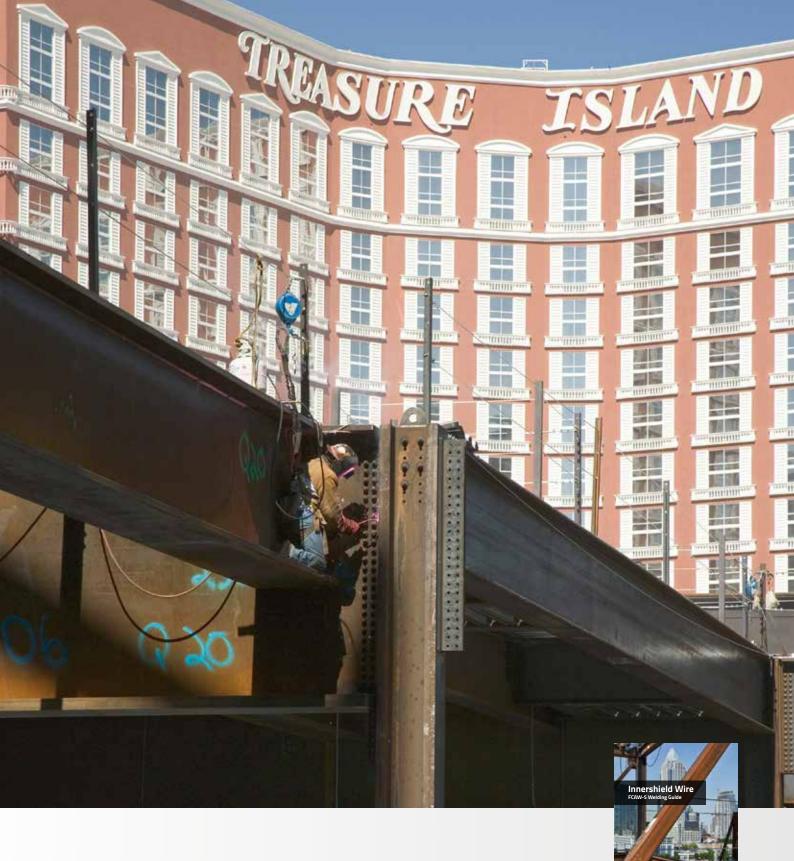
TAUX DE
DÉPÔT

x2,5

COÛT JUSQU'À **-23€/m**

Innershield® NR305 pour un taux de dépôt élevé en position de soudage à plat

Coût au mètre soudé


Diameter, Polarité	Stick Out (mm)	Vitesse de fil (Vfil) (m/min)	Tension (V)	Approx. Courant (A)	Taux de dépôt (kg/h)
	35-51	4,4	20-22	300	4,0
		5,6	21-23	330	5,0
2,0 mm, DC+		6,6	22-24	360	5,9
		7,6	24-26	375	6,9
		8,3	25-27	400	7,4
	41-54	4,1	21-23	330	5,0
2,4 mm,		6,1	24-26	425	7,6
DC+		7,6	27-29	475	9,5
		10,2	33-35	525	12,7

Vous souhaitez en savoir plus?

Veuillez nous contacter pour prendre rendez-vous.

Globalement, ce qui est important, c'est que les fils Innershield® soient utilisés en suivant les lignes directrices appropriées. Pour cette raison, consultez notre brochure "Innershield® Wire: FCAW-s Welding Guide" ou demandez-nous directement

K-IMD&U

NOTRE PRÉSENCE LOCALE

NOUS REND PLUS FORTS À L'INTERNATIONAL

RÉSULTATS DES TESTS

Les résultats des tests pour les propriétés mécaniques, de composition du dépôt ou de l'électrode et des niveaux d'hydrogène diffusible ont été obtenus à partir d'une soudure produite et testée d'après les normes réglementaires, et ne doivent pas être considérés comme étant les résultats attendus pour une application ou un soudage particuliers. Les résultats varieront en fonction de nombreux facteurs, y compris

mais sans s'y limiter, de la procédure de soudage, de la composition chimique et de la température de la tôle, du design de soudage et des méthodes de fabrication. Les utilisateurs sont priés de confirmer, par un test de qualification, ou autre moyen approprié, l'adéquation de toute pièce d'usure et procédure de soudage avant de l'utiliser dans l'application prévue.

POLITIQUE DE SERVICE APRÈS-VENTE

Lincoln Electric® fabrique et commercialise des équipements de soudage, des pièces d'usure et des outillages de coupe de haute qualité. Nous privilégions la satisfaction des besoins de nos clients et nous nous attachons à dépasser leurs attentes. Lincoln Electric est à votre disposition pour répondre à vos demandes d'informations et de conseils sur l'utilisation de nos produits. Nos collaborateurs mettent toutes leurs compétences au service des clients pour répondre à leurs demandes sur la base des informations fournies et de leurs connaissances concernant l'application. Nos collaborateurs ne sont pas toutefois en mesure de vérifier ces informations ou d'évaluer les exigences techniques pour le soudage particulier. Lincoln Electric ne garantit ni ne valide ou n'assume par conséquent aucune responsabilité quant à ces informations ou ces conseils. La fourniture de ces informations ou de ces conseils ne crée, ni n'étend, ni ne modifie d'autre part une garantie sur nos produits. Nous déclinons en particulier

toute garantie expresse ou tacite qui pourrait découler de l'information ou du conseil, entre autres une quelconque garantie implicite de qualité loyale et marchande ou une quelconque garantie de compatibilité avec un usage particulier du client.

Lincoln Electric adopte une démarche personnalisée en termes de fabrication, mais le choix et l'utilisation de produits spécifiques vendus par Lincoln Electric relèvent et restent de la responsabilité exclusive du client. De nombreuses variables indépendantes de la volonté de Lincoln Electric sont préjudiciables aux résultats obtenus avec l'application de ces types de méthodes de fabrication et aux exigences de maintenance.

Les informations contenues dans la présente publication sont exactes en l'état actuel de nos connaissances à la date d'impression. Veuillez consulter www.lincolnelectric.eu pour des informations à jour.

