
SPECIAL ALLOYS" LINCOLN www.lincolnelectric.eu THE WELDING EXPERTS®

BEING PRESENT LOCALLY
MAKES US MORE AWARE GLOBALLY

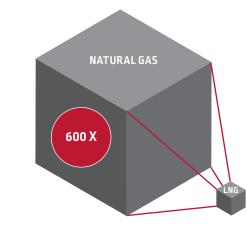
Benefit from the Market Leader

SPECIAL ALLOYS

2 TOTAL WELDING SOLUTIONS FOR THE LNG INDUSTRY www.lincolnele

ITAL WELDING SOLUTIONS FOR THE LNG INDUST

LNG LIQUEFIED NATURAL GAS


Natural gas mainly in the form of Methane, FIVE DIFFERENT TYPES OF LNG FACILITIES after being extracted from gas fields, will be processed in a gas processing plant where it's impurities such as CO₂, Water & Sulfur will be removed. Now it is time to transport the gas to the end users for distribution. Eventually, either a gas pipeline will be used

or Natural gas gets liquefied at cryogenic temperature of -265°F (-160°C). When natural gas is turned into LNG, its volume shrinks by a factor of 600. This reduction in volume enables the gas to be transpor-

ted economically over long distances.

- 1. LNG Export Terminal (Liquefaction)
- 2. LNG Import Terminal (Regasification)
- 3. LNG Peak-shaving
- 4. Floating LNG (FLNG)
- 5. LNG Carriers

Lincoln Electric offers Total Welding Solution for all parts of the LNG value chain. Storage Tanks, Cryogenic Piping, Carriers and Heat Exchanger.

LNG EXPORT TERMINAL (LIQUEFACTION)

Refrigeration process is the core of an LNG LNG will be shipped to destination port. In ingenious processes are used. Such as C3-MR, cation plant components. AP-X, Cascade, DMR & SMR. The refrigeration process happens in multiple steps and requires various Heat Exchanger types and Compressor systems.

LNG IMPORT TERMINAL (REGASIFICATION)

plant in which natural gas is cooled and order to be used as Natural gas again it has to liquefied to -160°C or less using the principle get vaporized (Re-gasified). There are various of refrigeration. Because gas is cooled and Heat Exchangers (vaporizers) used to vaporize liquefied to an extremely-low temperature the LNG. Depending on the vaporizer type, Seduring the process, an enormous amount of awater, Ambient Air, Propane or Burnt LNG is energy is consumed. How much this enerused to vaporize the LNG. We have specialized gy can be reduced is important, so various welding solutions for fabrication of Re-gasifi-

LNG PEAK-SHAVING

terminals there is a peak shaving facility to sto- has the capability of Liquefaction or Regasire the LNG for most of the year and export it at fication of Natural gas right at the Offshothe most demanding season of the year.

FLOATING LNG (FLNG)

LNG as fuel has seasonality, in some export Floating LNG is a floating Offshore unit which re topside. LNG FPSO refers to LNG Floating Production Storage and Offloading Unit which does the gas processing and Liquefaction.

> Floating LNG can also be Regasification units. Instead of investing in fix regasification terminals, a floating unit can travel to the end destination to re-gasify the LNG. It is called FSRU referring to Floating Storage & Regasification

LNG CARRIERS

In order to transport LNG from liquefaction or Peak shaving terminal to an end user location, LNG carriers are needed. There are also ships which sail with LNG as fuel. All such carriers require special materials, insulation and welding solutions. We offer Total welding solutions for all LNG carrier types.

SPECIAL ALLOYS

5 TOTAL WELDING SOLUTIONS FOR THE LNG INDUSTRY TOTAL WELDING SOLUTIONS FOR THE LNG INDUSTRY 7 www.lincolnelectric.eu

MAIN APPLICATIONS

AND BASE MATERIALS

STORAGE TANKS

- 9% Nickel
- C-Mn steel
- Al 5083
- Piping: 304L

CRYOGENIC PIPING

- 304L
- 316L

CRYOGENIC HEAT EXCHANGER

- Al 5083
- Al 6063
- 304L
- 316L

LNG CARRIER

- 5% Nickel
- 9% Nickel
- Al 5083
- 304L
- FeNi36 (Invar) alloy

LNG PROJECT

A LNG project can take more than 6 years to build from the Final Investment Decision (FID). Due to complexity of construction and high level of safety control, construction of storage tanks alone can take up to 3 years.

Welding is a small but key element in execution of LNG projects. Quality consumables along with mechanized welding solutions minimize the risks.

LNG STORAGE TANKS & CONTAINMENT TYPES

LNG storage tanks are highly critical components of LNG industry. Storage tanks can be categorized from different aspects.

- Fix or on carrier tanks
- Containment Type
- Above Ground, In-Ground types & Under-Ground

- FIXED STORAGE TANKS CAN
 NORMALLY BE DESIGNED USING ONE OF
 FOUR CONTAINMENT TYPES
- Single Containment
- Double Containment
- Full Containment
- Membrane Type

Single Containment

Double Containment

Full Containment

DESIGN ASPECTS

The balance between the required land, construction, cost and local legislation defines the containment type. Various design codes govern the construction of LNG tanks.

- ASME BPVC Sec. VIII, Div. 1
 API 660
- ASME BPVC Sec. VIII Div. 2 BS EN 14620-1:
- API 620
- NFPA 59A
- JIS B8265:
- JIS B8267

Liquefaction temperature for some types of gas and its suitable material for transport or storage

Table 1) Boiling temperature of cryogenic gases vs materials for liquid storage

Steel grade	Boiling temp. (°C)	Gas	
Fine grained steel	-28	CO2 (to 1.5)	
1% Ni steel	-42	Propane	
	-78	CO2 (solid)	
2.5% Ni steel	-84	Acetylene	
	-88	Ethane	
3.5% Ni steel	-104	Ethylene	
5% Ni steel	-153	Krypton	
9% Ni steel	-161	Methane	
	-183	Oxygen	
	-186	Argon	
Aluminium	-196	Nitrogen	
	-253	Hydrogen	
	-269	Helium	

9% NICKEL IS THE MAIN GRADE USED FOR FABRICATION OF LNG INNER TANKS CONSIDERING THE VERY LOW OPERA-TING TEMPERATURE

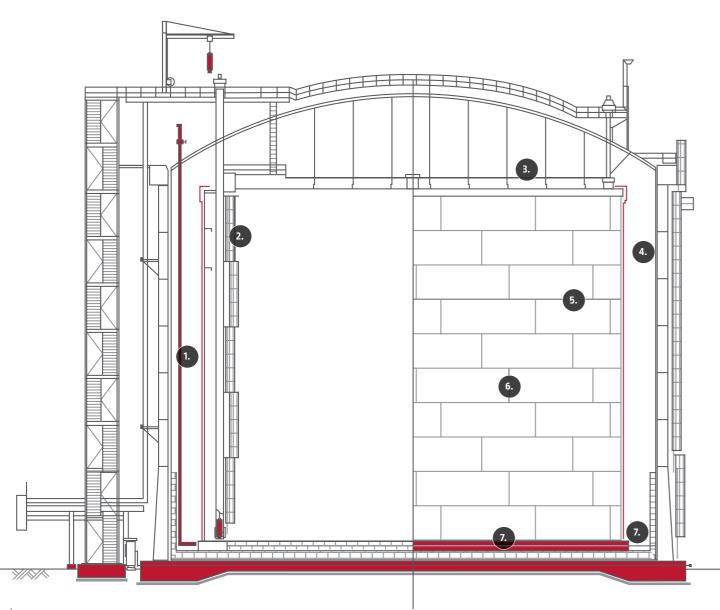
Table 2) Typical properties of 9% Nickel steel plates

		ASTM		
Item	A353	A553 Type I		
Yield strength 0.2% Proof stress (MPa)	≥515	≥585		
Tensile strength (MPa)	6	90-825		
Elongation (%), t:Thick (mm)		≥20.0		
Charpy (J) at -196°C		≥34		
Lateral expansion*3 (mm) at -196°C		≥0.38		
Thickness (mm)	50	50		
Heat treatment	Normalized/T	QT		
C (%)	≤0.13			
Si (%)	0.15-0.40			
Mn (%)	≤0.90			
P (%)	≤0.035			
S (%)	≤0.035			
Ni (%)	8.50-9.50			

8 TOTAL WELDING SOLUTIONS FOR THE LNG INDUSTRY www.lincolnelectric.eu www.lincolnelectric.eu www.lincolnelectric.eu

FULL CONTAINMENT

I NG TANK


Full containment has become the most commonly built LNG tank type due to its safety and economical value.

The inner tank is made of 9% Nickel steel and the outer tank is made of Pre-stressed concrete (PC). Between the inner and outer tank there is a vapor barrier made of thin carbon steel plate and many different types of insulations.

The roof can be made of concrete or 9% Nickel material depending on the design. There is an Aluminium suspended deck hanging from the roof. You can view the complete LNG tank fabrication sequence in our LEAD application.

Please find more information according to our new APP on page 18

VAPOR BARRIER

It is made of carbon steel and is normally of a very low thickness. This is a protective layer between the inner tank insulation and concrete. Having a very low thickness the best method to weld this application will be cored wire to avoid unnecessary distortion.

SPECIAL ALLOYS"

SMAW:

FCAW:

FCAW:

SAW:

- Conarc 51
- Outershield
- Conarc 49C
- MC460VD-H

Supercore 308LCF

INTERNAL PIPING

Liquefied gas is transferred to and from the tank via stainless steel piping. The piping requires special consumables to guarantee the required toughness / lateral expansion.

SMAW:

GTAW:

- Ultramet 308LCF
- Ultramet 316LCF

Supercore 316LCF

- ER308LCF
- ER316LCF
- ER316LCF + P2007

ER308LCF + P2007

SUSPENDED DECK

Carbon or stainless steel rods are attached from deck stiffeners to the roof girders or rafters. The suspended decks require a deck annular plate to provide a vapor seal between the liquid product and the vapor space above the primary containment. The deck is made of Aluminium alloy 5083.

GTAW:

GMAW:

- Superglaze 5183
- Superglaze 5183

INNER TANK KNUCKLE JOINTS

Top stiffener joints require welding in 4F/4G position. To that end we have developed Nyloid 4 electrode to be able to weld in overhead position. The electrode has special slag design ensuring stable arc and providing sound weld metal.

SMAW:

Nyloid 4

INNER TANK HORIZONTAL JOINTS

Each two 9% Nickel plates are welded in the vertical up position. Welding can be performed simultaneously from both sides or one followed by another. Typically alloy 276 is used for this application.

SAW:

- LNS NiCroMo 60/16 + P2007
- LNS NiCro 60/20 + P2007
- Techalloy 276 + P2007
- Techalloy 625 + P2007

INNER TANK VERTICAL JOINTS

INNER TANK BOTTOM

with FCAW or SMAW on the jobsite.

9% Nickel vertical joints are welded in vertical up. For this reason either SMAW electrode is applied manually or FCW for semi-automatic and fully automatic welding.

The bottom plates corners are normally welded in the 2G

welding position. In most of the designs a horizontal 2G joint is used. Normally bottom plates are pre-joined in workshop

using the SAW process and then will be welded together

SMAW:

- Nyloid 2
- Supercore 625P

FCAW:

FCAW:

NIMROD 625KS

SMAW:

- Nyloid 2
- Supercore 625P
- NIMROD 625KS

SAW:

- LNS NiCroMo 60/16 + P2007
- LNS NiCro 60/20 + P2007

TOTAL WELDING SOLUTIONS FOR THE LNG INDUSTRY 11

INNER TANK HORIZONTAL JOINTS

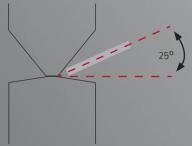
Welding of horizontal joints in the 2G welding position is one of the most critical steps of LNG tank fabrication. Lincoln electric offers a full product portfolio of consumables and equipment as well as the automation package.

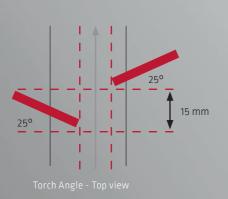
A 200,000m3 LNG TANK CAN HAVE AN INNER **TANK WITH 10 SHELL COURSES.**

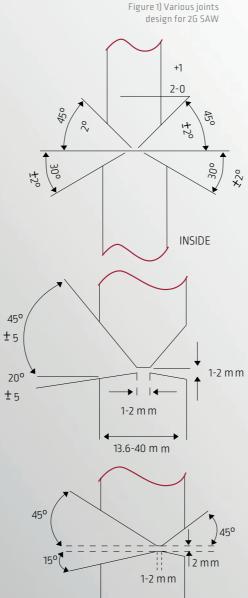
- Welding Sequence
 - > Single sided

 - > Double sided
- Joint Symmetry
 - > Compound 1/2 1/2
 - > Compound 1/3 2/3

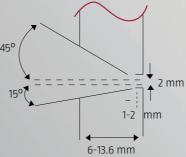
Joint Opening > With Opening

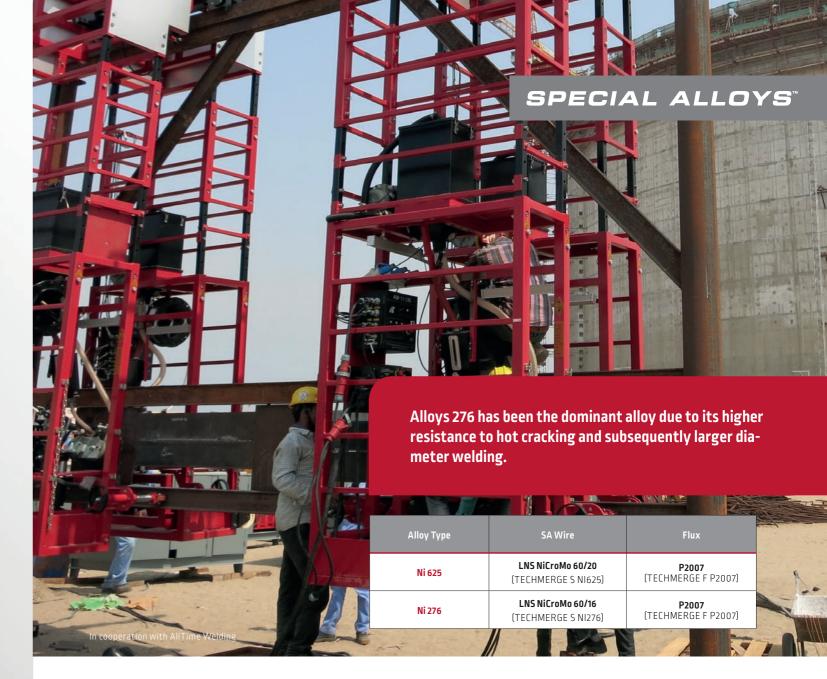

> W/O Opening


SAW is the dominant process for welding of Horizontal joints. It offers the highest productivity. It is key to keep the balance among penetration, dilution and deposition rate.


THERE ARE GENERALLY TWO METHODS **OF SAW WELDING OF 2G JOINTS:**


- Single-sided: Whether it is a single V joint or a compound joint, welding will be finished on one side and then welding on the opposite side will be started.
- Double-sided welding: Will be performed on compound joint, which has currently become a standard joint design for thicknesses above 11mm

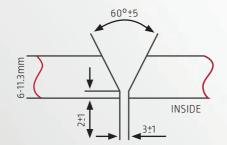


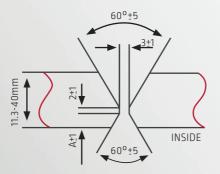


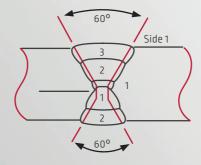
With the help of PowerWave® and Waveform Control Technology we can achieve a balance among penetration, mechanical properties, heat input and productivity.

We have conducted numerous trials and been able to design a special Waveform for Nickel base alloys applied for double sided SAW horizontal welding.

Table 3) Effect of AC/DC balance on welding parameters and heat input of double sided 2G welding


Arc	Pass	Voltage	Current	WFS (IPM) (cm)	Wave Balance	DC Offset	Frequency	Phase Angle	Travel Speed (IPM) (cm/min)	Deposition Lb/Hr (Kg/Hr)	Head Input kJ/in (kJ/mm)
Side 1	Root	26	290-310	100 (254)	60	0	80		13 (33)	12.6 (5.7)	36 (1.4)
Side 2	Root	27	290-310	100 (254)	60	15	80	180	13 (33)	12.6 (5.7)	37.4 (1.5)
Side 1	2	29	300-320	105 (267)	60	10	80		20 (51)	13.25 (6)	26.8 (1.05)
Side 2	2	29	300-320	105 (267)	60	10	80	180	20 (51)	13.25 (6)	26.8 (1.05)
Side 1	3	29	300-320	105 (267)	60	10	80		20 (51)	13.25 (6)	26.8 (1.05)
Side 2	3	29	300-320	105 (267)	60	10	80	180	20 (51)	13.25 (6)	26.8 (1.05)
Side 1	4	29	300-320	105 (267)	60	10	80		24 [61]	13.25 (6)	23.5 (925)
Side 2	4	29	300-320	105 (267)	60	10	80	180	24 [61]	13.25 (6)	23.5 (925)
Side 1	5	29	300-320	105 (267)	60	10	80		24 [61]	13.25 (6)	23.5 (925)
Side 2	5	29	300-320	105 (267)	60	10	80	180	24 (61)	13.25 (6)	23.5 (925)
Side 1	6	29	300-320	105 (267)	60	10	80		24 (61)	13.25 (6)	23.5 (925)
Side 2	6	29	300-320	105 (267)	60	10	80	180	24 (61)	13.25 (6)	23.5 (925)


INNER TANK VERTICAL JOINTS


FOR VERTICAL JOINTS SMAW AND FCAW ARE THE DOMINANT PROCESSES.

For manual process Nyloid 2 has been used for decades in many projects worldwide as the electrode of choice and Supercore 625P FCW is proven to offer the best combination of excellent weldability and mechanical properties.

Nyloid 2 has been applied for decades in numerous LNG projects. Its extra high metal recovery revolutionized the manual welding of the vertical joint.

Welding	Tensile properties					Impact toughness -196°C		Fracture toughness -170°C
position	Rp0.2, MPa	Rm, MPa	A4, %	A5, %	Z, %	CVN, J	LE, mm	CTOD, mm
PA-1G	500	770	44	43	41	70	1.20	-
PF-3G	500	760	46	43	42	86	1.44	0.50

Welding Method		Thickness Joint mm type ⁽¹⁾		Cross-weld tensile		Bend test			Charpy impact	t test
position		mm	type	MPa	T-V ^[2]	L-face ^[3]	L-root ^[3]	Location	CNV, J	LE, mm
PF-3G	Semi-Auto	13	60° D-V (2/3, 1/3)	750	pass	pass	pass	Mid-T	89	1.22
PF-3G	Semi-Auto	20	60° D-V (1/2, 1/2)	739	pass	pass	pass	Mid-T	75	1.05
PF-3G	Full mech.	25	60° D-V (2/3, 1/3)	715	pass	pass	pass	Mid-T	86 72	1.6 0.9
PF-3G	Semi-Auto	13	45°+15° (2/3, 1/3)	742	pass	pass	pass	Mid-T	91	0.79

CRYOGENIC PIPING STAINLESS STEEL

FERRITE CONTROL

Base materials are carefully processed. Weld metals are as-cast and do not necessarily achieve the required toughness.

HOW TO ACHIEVE WELD METAL IMPACT PROPERTIES?

- Solution annealing
- Fully austenitic consumables
- Gas shielded processes
- Specially designed **Controlled Ferrite** consumables

VARIOUS STANDARDS HAVE FERRITE LIMITS FOR STAINLESS STEELS, FOR EXAMPLE:


ASME III requires 5FN minimum; 3-10FN for service above 427°C. API 582 has 3FN minimum, it is noted that for cryogenic service lower FN may be required.

It is proven that a narrow controlled Ferrite between 2-5FN guarantees the required mechanical properties under cryogenic conditions. Our LCF consumables have

0.9 308L 0.8 316L 0.7 0.6 0.5 0.4 0.3 0.2 Ferrite, FN

308L & 316L welds: ferrite control range

Figures 3) Effect of FN on lateral expansion for Austentic grades

been welded in LNG projects for the last 3 decades.

HEAT EXCHANGER

Various heat exchanger are used in LNG facilities

Heat exchangers in LNG industry play a huge role. The entire refrigeration or re-gasification process relies on multi step exchange of heat.

C-Mn and stainless steel or Aluminium alloys are applied. Aluminum alloys of 6XXX and 5XXX are most commonly used grades. Our Superglaze products have a long presence in LNG applications

LIQUEFACTION:

- Main Cryogenic Heat Exchanger (MCHE)
- Spiral Wound Heat Exchanger (SWHE)
- Plate-Fin Heat Exchanger (PFHE)

REGASIFICATION:

- Vaporizers
- Boil-off gas Re-condenser

LNG **CARRIERS**

SPECIAL ALLOYS

LNG CARRIER HAVE DIFFERENT STORAGE TANK DESIGNS:

- Integral (Dependent)
- Independent

Integral tanks are built inside the carrier hull. The base material is carbon steel covered by Insulation and on top of the insulation there is membrane cladding with stainless steel or Invar (36% Nickel) straps.

INDEPENDENT TANKS ARE

- Type ,A' (fully refrigerated)
- Type ,B' (typical LNG tank)
- Type ,C' (fully pressurized)

Depending on the design of the independent tank different materials such as Aluminium Alloy, Austenitic stainless, 5% & 9% Nickel material is utilized

Independent Tanks

Type B

p = 700 mbar Partial secondary barrier

p = 700 mhar Full secondary barrier

p = 2000 mbar

Membrane Tanks p < 700 mbar Full secondary barrier

ALUMINIUM WELDING

Let us put our experience to work for you

FULLY INTEGRATED ALUMINIUM MIG WIRE FACILITY

As a major supplier of welding wire, Lincoln Electric is the leader in GMAW wire manufacturing technology. We carry that same technology and expertise to our Aluminium GMAW wire manufacturing. Lincoln Electric has the only fully integrated Aluminum GMAW wire facility in the world. We start from raw primary aluminum

and then use state-of-the-art equipment to produce a complete range of aluminum alloys including 1100, 1070, 2319, 4043, 4047, 5087, 5183, 5356, 5554 and 5556. This gives us full control of welding chemistry throughout the process as well as the ability to always deliver product to our customer, regardless of market conditions.

UNALLOYED STEELS // MILD STEEL CONSUMABLES

Alloy Type	Welding Process	Product Name and Specification					
		Product Name	AWS	BS/EN/ISO			
	CMANA	CONARC 49C	A5.1: E7018-1-H4R	BS EN ISO 2560-A: E 46 4 B 32 H5			
	SMAW	CONARC 51	A5.1: E7016-1-H4R	BS EN ISO 2560-A: E 42 4 B 12 H5			
	GMAW	SUPRAMIG ULTRA	A5.18: ER70S-6	BS EN ISO 14341-A: G50 5 M21 4Si1/G46 3 C1 4Si1			
C-Mn	GTAW	LNT 25	A5.18: ER70S-3	BS EN ISO 636: W 42 5 W2Si			
С-МП	GTAVV	LNT 26	A5.18: ER70S-6	BS EN ISO 636: W 42 5 W3Si1			
	MCAW	OUTERSHIELD MC460VD-H	A5.18: E70C-6M H4	BS EN ISO 17632-A: T 46 2 M M 1 H5			
	SAW (780)	L-61	A5.17: EM12K	BS EN ISO 14171-A: S2Si			
	SAW (P230)	L-50M	A5.17: EH12K	BS EN ISO 14171-A: S3Si			

STAINLESS STEEL // CRYOGENIC STAINLESS STEEL CONSUMABLES

Alloy Type	Welding Process	Product Name and Specification					
		Product Name	AWS	BS/EN/ISO			
	SMAW	ULTRAMET 308LCF (TECHTRODE 308LCF)	A5.4: E308L-16	BS EN ISO 3581-A: E 19 9 L R 3 2			
	SMAW	ULTRAMET B308LCF (TECHTRODE 308LBCF)	A5.4: E308L-15	BS EN ISO 3581-A: E 19 9 L B 4 2			
Cryogenic 308L	GTAW	ER308LCF (TECHTIG 308LCF)	A5.9: ER308L	BS EN ISO 14343-A: W 19 9 L			
	FCAW	SUPERCORE308LCF (TECHCORE 308LCF)	A5.22: ER308LT1-1/4J	BS EN ISO 17633-A: T 19 9 L P C/M 2			
	SAW (P2007)	ER308LCF (TECHMERGE S 308LCF)	A5.9: ER308L	BS EN ISO 14343-A: S 19 9 L			
	CAAAAA	ULTRAMET 316LCF (TECHTRODE 316LCF)	A5.9: ER308L	-			
	SMAW	ULTRAMET B316LCF (TECHTRODE 316LBCF)	A5.4: E316L-15	-			
Cryogenic 316L	GTAW	ER316LCF (TECHTIG 316LCF)	A5.9: ER316L	BS EN ISO 14343-A: W 19 12 3 L			
	FCAW	SUPERCORE316LCF (TECHCORE 316LCF)	A5.22: ER316LT1-1/4J	BS EN ISO 17633-B: TS 316 L FM1			
	SAW (P2007)	ER316LCF (TECHMERGE S 316LCF)	A5.9: ER316L	BS EN ISO 14343-A: S 19 12 3 L			

NICKEL BASE ALLOYS // ALLOY C & B CONSUMABLES

Alloy Type	Welding Process	Product Name and Specification					
		Product Name	AWS	BS/EN/ISO			
	SMAW	NIMROD 59KS (TECHTRODE NI59KS)	A5.11: ENiCrMo-13	BS EN ISO 14172: E Ni 6059			
59	GMAW	HAS 59 (TECHFIL NI59)	A5.14: ERNiCrMo-13	BS EN ISO 18274: S Ni 6059			
	GTAW	HAS 59 (TECHTIG NI59)	A5.14: ERNiCrMo-13	BS EN ISO 18274: S Ni 6059			
	SMAW	NIMROD C276KS (TECHTRODE NI276KS)	A5.11: ENiCrMo-4	BS EN ISO 14172: E Ni 6276			
		TECH-ROD 276	A5.11: ENiCrMo-4	-			
	GMAW	HAS C276 (TECHFIL NI276)	A5.14: ERNiCrMo-4	BS EN ISO 18274: S Ni 6276			
C276	GMAVV	TECHALLOY 276	A5.14: ERNiCrMo-4	-			
L276	CTANA	HAS C276 (TECHTIG NI276)	A5.14: ERNiCrMo-4	BS EN ISO 18274: S Ni 6276			
	GTAW	TECHALLOY 276	A5.14: ERNiCrMo-4	-			
	SAW (P2007)	LNS NiCroMo 60/16 (TECHMERGE S NI276)	A5.14: ERNiCrMo-4	BS EN ISO 18274: S Ni 6276 (NiCr15Mo16Fe6W4)			
	SAW	TECHALLOY 276	A5.14: ERNiCrMo-4	-			

NICKEL BASE ALLOYS // 625 ALLOY CONSUMABLES

Alloy Type	Welding Process	Product Name and Specification					
		Product Name	AWS	BS/EN/ISO			
	SMAW	NIMROD 625KS (TECHTRODE NI625KS)	A5.11: ENiCrMo-3	BS EN ISO 14172: ENi 6625			
	SIMAVV	TECH-ROD 112	A5.11: ENiCrMo-3				
		62-50 (TECHFIL NI625)	A5.14: ERNiCrMo-3	BS EN ISO 18274: SNi 6625			
	GMAW	TECHALLOY 625	A5.14: ERNiCrMo-3				
625	GTAW	62-50 (TECHTIG NI625)	A5.14: ERNiCrMo-3	BS EN ISO 18274: SNi 6625			
	GTAW	TECHALLOY 625	A5.14: ERNiCrMo-3				
	FCAW	SUPERCORE 625P (TECHCORE NI625P)	A5.34: ENiCrMo3T1-1/4	BS EN ISO 12153: T Ni 6625 P C/M 2			
	SAW (2007)	LNS NiCro60/20 (TECHMERGE S NI625)	A5.14: ERNiCrMo-3	BS EN ISO 18274: SNi 6625			
	SAW (2007)	TECHALLOY 625	A5.14: ERNiCrMo-3				

NICKEL BASE ALLOYS // SPECIALLIST NICKEL BASE ALLOY CONSUMABLES

Alloy Type	Welding Process	Product Name and Specification					
		Product Name	AWS	BS/EN/ISO			
Nicola c	CMANN	NYLOID 2 (TECHTRODE NI620)	A5.11: ENiCrMo-6	BS EN ISO 14172 : E Ni 6620			
NiCrMo-6	SMAW	NYLOID 4 (TECHTRODE NI620A)	A5.11: ENiCrMo-6	BS EN ISO 14172 : E Ni 6620			

ALUMINIUM ALLOYS

Alloy Type	Welding Process		Product Name and Specification				
		Product Name	AWS	BS/EN/ISO			
ALESO	GMAW	SUPERGLAZE 5183	AWS A5.10 : ER5183	-			
AI 5183	GTAW	SUPERGLAZE 5183	AWS A5.10 : ER5183	-			

FLUX FOR SUBMERGED ARC WELDING

Flux Type	Wire	Specification	Basicity Index	Polarity
780	L-61	BS EN ISO 14174: S A AR/AB 178 AC H5	0,7	DC/AC
P230	L-50M	BS EN ISO 14174: S A AB 1 67 AC H5	1,6	DC/AC
P2007 (TECHMERGE F P2007)	ER308LCF ER316LCF LNSNiCro 60/20 LNS NiCrMo 60/16 TECHALLOY 276	BS EN ISO 14174: S A AF 2 64 AC H5	1,6	DC +/-

o www.lincolnelectric.com for any updated information.

LINCOLN ELECTRIC
THE WELDING EXPERTS®

This information is accurate to the best of our knowledge at the

www.lincolnelectric.eu