

Magnum[®] PRO

Tabelas de corte para tochas de plasma LC300M

Tocha padronizada Tocha de desconexão rápida

Tradução das instruções originais.

Use sempre peças consumíveis Lincoln Electric originais.

Serviço autorizado e localizador de distribuidores: www.lincolnelectric.com/locator

Guarde para referência futura

Data da compra:
Código/Número da peça: (ex: 10859)
Número de série: (ex: U1060512345)

THE LINCOLN ELECTRIC COMPANY

BK8053-000108 Rev C.7

© Lincoln Global, Inc. Todos os direitos reservados

22801 St. Clair Avenue • Cleveland, OH • 44117-1199 • EUA Telefone: +1.216.481.8100 • www.lincolnelectric.com

Histórico de revisões

Rev	Descrição da alteração

Aviso de marca registrada

Magnum e FineLine são marcas comerciais registradas da Lincoln Global, Inc. Todas as outras marcas comerciais pertencem a seus respectivos proprietários.

Sumário

1.0 Avisos de segurança	4
1.1 Precauções gerais	4
1.2 Proposta 65 da Califórnia	
1.3 Proteção contra radiação ultravioleta	4
1.4 Prevenção contra incêndios	4
1.5 Proteção contra ruído	
1.6 Prevenção contra fumaça tóxica	
1.7 Equipamentos de auxílio à saúde	
1.8 Prevenção contra choque elétrico	
1.9 Prevenção contra explosões	
1.10 Índice do panfleto de normas de segurança	
2.0 Tabelas de corte para tochas de plasma LC300M	10
2.1 Visão geral	
2.2 Descrição dos valores da tabela de corte	
2.3 Seleção das peças consumíveis	
2.4 Tabelas de corte	
Aço macio – 30 Amperes – Plasma de oxigênio/Proteção de oxigênio.	
Aço macio – 80 Amperes – Plasma de oxigênio/Proteção de ar	
Aço macio – 140 Amperes – Plasma de oxigênio/Proteção de ar	
Aço macio – 170 Amperes – Plasma de oxigênio/Proteção de ar	
Aço macio – 200 Amperes – Plasma de oxigênio/Proteção de ar	
Aço macio – 300 Amperes – Plasma de oxigênio/Proteção de ar	
Aço inoxidável – 30 Amperes – Plasma de ar /Proteção de ar	
Aço inoxidável – 80 Amperes – Plasma de ar /Proteção de nitrogênio . Aço inoxidável – 140 Amperes – Plasma de ar /Proteção de nitrogênio	
Aço inoxidavel – 140 Amperes – Plasma de al /Proteção de hitrogênio Aço inoxidável – 170 Amperes – Plasma de ar /Proteção de nitrogênio	
Aço inoxidavel – 170 Amperes – Plasma de al / Proteção de hitrogênio	
Aço inoxidável – 300 Amperes – Plasma de ar /Proteção de nitrogênio	
Aço inoxidável – 80 Amperes – Plasma H17/Proteção de nitrogênio	
Aço inoxidável – 140 Amperes – Plasma H17/Proteção de nitrogênio	
Aço inoxidável – 170 Amperes – Plasma H17/Proteção de nitrogênio	
Aço inoxidável – 200 Amperes – Plasma H17/Proteção de nitrogênio	32
Aço inoxidável – 300 Amperes – Plasma H17/Proteção de nitrogênio	33
Alumínio – 30 Amperes – Plasma de ar/Proteção de nitrogênio	
Alumínio – 80 Amperes – Plasma de ar/Proteção de nitrogênio	
Alumínio – 140 Amperes – Plasma de ar/Proteção de nitrogênio	
Alumínio – 170 Amperes – Plasma de ar/Proteção de nitrogênio	
Alumínio – 200 Amperes – Plasma de ar/Proteção de nitrogênio	
Alumínio – 300 Amperes – Plasma de ar/Proteção de nitrogênio	30

1.0 Avisos de segurança

A AVISO

1.1 Precauções gerais

Embora o corte a plasma venha sendo usado com segurança durante anos, ele exige certas precauções para garantir a segurança do operador e de outras pessoas ao redor do equipamento. As informações de segurança a seguir devem ser fornecidas a cada pessoa que for operar, observar, realizar manutenção ou trabalhar próximo a esse equipamento. Sempre use equipamento de proteção individual (EPI) adequado.

A instalação, a operação e os reparos feitos neste Sistema só devem ser realizados por pessoal qualificado. O Sistema faz uso de circuitos de corrente alternada (CA) e corrente contínua (CC) para a operação. Existe o risco de choque fatal. Tenha muito cuidado ao trabalhar no Sistema.

1.2 Proposta 65 da Califórnia

Este produto, quando usado para soldagem ou corte, produz fumaça ou gases que contêm substâncias químicas conhecidas no Estado da Califórnia por causar defeitos congênitos e, em alguns casos, câncer. (Código de Saúde e Segurança da Califórnia § 25249.5 e seguintes)

AVISO: Câncer e danos à reprodução www.p65warnings.ca.gov

1.3 Proteção contra radiação ultravioleta

O corte a plasma produz radiação ultravioleta semelhante a um arco de solda. Essa radiação ultravioleta pode causar queimaduras na pele e nos

BK8053-000108 Rev C.7

olhos. Por esse motivo, é essencial usar proteção adequada. A melhor forma de proteger os olhos é usar óculos de segurança ou um capacete de soldagem com tonalidade AWS nº 12 ou ISO 4850 nº 13, que oferece proteção de até 400 amperes. Todas as áreas expostas da pele devem ser cobertas com roupas antichamas. A área de corte também deve ser preparada de modo a não refletir a luz ultravioleta. As paredes e outras superfícies devem ser pintadas com cores escuras para reduzir a luz refletida. Telas ou cortinas de proteção devem ser instaladas para proteger da radiação ultravioleta os demais trabalhadores da área.

1.4 Prevenção contra incêndios

Ao usar esse Sistema, é necessário ter bom senso. Durante o corte, o arco produz faíscas que podem causar um incêndio se caírem sobre materiais

inflamáveis. Verifique se que todos os materiais inflamáveis estão a uma distância adequada da área de corte. Todos os líquidos inflamáveis devem estar a pelo menos 12 metros de distância da área de corte, de preferência armazenados em um armário de metal. O corte a plasma nunca deve ser realizado em recipientes que contenham materiais inflamáveis. Verifique se os extintores de incêndio estão prontamente acessíveis na área de corte.

Verifique se a área de corte é adequadamente ventilada ao usar oxigênio como gás de corte.

A AVISO

1.5 Proteção contra ruído

O Sistema gera altos níveis de ruído durante o corte. Dependendo do tamanho da área de corte, da distância da tocha de corte e do nível de

corte da corrente do arco, os níveis de ruído aceitáveis podem ser excedidos. Deve-se usar proteção adequada para os ouvidos, conforme definido pelos códigos locais ou nacionais. Consulte o Manual do operador do sistema de plasma para obter os níveis de emissão de ruído.

1.6 Prevenção contra fumaça tóxica

Deve-se tomar cuidado para garantir a ventilação adequada na área de corte. Alguns materiais liberam vapores tóxicos que podem

ser prejudiciais ou fatais para as pessoas nas proximidades da área de corte. Além disso, alguns solventes se decompõem e formam gases nocivos quando expostos à radiação ultravioleta. Esses solventes devem ser removidos da área antes do corte.

O metal galvanizado pode produzir gases nocivos durante o processo de corte. Garanta a ventilação adequada e use equipamento de respiração ao cortar esses materiais.

Certos metais revestidos com ou que contêm chumbo, cádmio, zinco, berílio e mercúrio produzem toxinas prejudiciais. Não corte esses metais a menos que todas as pessoas expostas à fumaça usem equipamentos de proteção respiratória adequados.

1.7 Equipamentos de auxílio à saúde

O Sistema cria campos elétricos e magnéticos que podem interferir em determinados tipos de equipamentos de auxílio à saúde, como marca-passos.

Qualquer pessoa que use um marca-passo ou item semelhante deve consultar um médico antes de operar, observar, fazer manutenção ou reparar o Sistema. Observe as seguintes diretrizes para minimizar a exposição a esses campos elétricos e magnéticos:

- Fique o mais longe possível da fonte de alimentação, da tocha, dos cabos da tocha e do console de início de arco.
- Passe os cabos da tocha o mais próximo possível do cabo de aterramento.
- Nunca coloque o corpo entre os cabos da tocha e o cabo de aterramento. Mantenha o cabo de aterramento e os cabos da tocha do mesmo lado do corpo.
- Nunca fique no centro de um conjunto enrolado de cabos da tocha ou de um cabo de aterramento.

AVISO

1.8 Prevenção contra choque elétrico

O Sistema usa altas tensões de circuito aberto que podem ser fatais. Deve-se ter extremo cuidado ao operar ou fazer manutenção no Sistema.

Somente pessoal qualificado deve fazer a manutenção do Sistema. Observe as seguintes orientações para se proteger contra choques elétricos:

- Uma chave seccionadora montada na parede deve ser instalada e protegida com fusíveis de acordo com os códigos elétricos locais e nacionais. A chave seccionadora deve estar localizada o mais próximo possível da fonte de alimentação para que possa ser desligada em caso de emergência.
- O cabo de alimentação primário deve ter uma classificação mínima de 600 volts para proteger o operador. Além disso, deve ser dimensionado de acordo com os códigos elétricos locais e nacionais. Inspecione o cabo de alimentação primário com frequência. Nunca opere o Sistema se o cabo de alimentação estiver danificado de alguma forma.
- Certifique-se de que o fio de aterramento da energia principal esteja conectado ao terminal de aterramento da energia de entrada na fonte de alimentação.
 Certifique-se de que a conexão esteja bem apertada.
- Verifique se a saída positiva (aterramento de trabalho) da fonte de alimentação está conectada a uma área de metal sem revestimento na mesa de corte. Uma haste de aterramento acionada não deve ser colocada a mais de um metro e meio dessa conexão. Certifique-se de que esse ponto de aterramento na mesa de corte

- seja usado como o ponto de aterramento estrela para todas as outras conexões de aterramento.
- Inspecione os cabos da tocha com frequência. Nunca use o Sistema se os cabos estiverem danificados de alguma forma.
- Não fique em áreas molhadas ou úmidas ao operar ou fazer manutenção no Sistema.
- Use luvas e calçados isolantes ao operar ou fazer manutenção no Sistema.
- Certifique-se de que o Sistema esteja desligado na tomada da parede antes de fazer manutenção na fonte de alimentação ou na tocha.
- Nunca troque as peças consumíveis da tocha a menos que o Sistema esteja desligado na tomada da parede.
- Não tente remover nenhuma peça de baixo da tocha durante o corte. Lembrese de que a peça de trabalho forma o caminho da corrente de volta para a fonte de alimentação.
- Nunca ignore os dispositivos de intertravamento de segurança.
- Antes de remover qualquer uma das tampas, desligue o Sistema na tomada da parede. Aguarde pelo menos cinco (5) minutos antes de remover qualquer tampa. Isso dará tempo para que os capacitores dentro da unidade se descarreguem.
- Nunca opere o Sistema sem que todas as tampas estejam no lugar.
- A manutenção preventiva deve ser realizada diariamente para evitar possíveis riscos à segurança.

Estas informações estão sujeitas aos controles dos Regulamentos de Administração de Exportação [EAR]. Estas informações não devem ser fornecidas a pessoas que não sejam dos EUA ou transferidas por qualquer meio para qualquer local fora dos Estados Unidos, em desacordo com as exigências dos EAR.

A

AVISO

1.9 Prevenção contra explosões

O Sistema utiliza gases comprimidos. Use técnicas adequadas ao manusear

cilindros de gás comprimido e outros equipamentos de gás comprimido. Observe as seguintes orientações para se proteger contra explosão:

- Nunca opere o Sistema na presença de gases explosivos ou outros materiais explosivos.
- Nunca corte cilindros pressurizados ou qualquer recipiente fechado.
- Ao usar uma mesa de água e cortar alumínio sob a água ou com a água tocando a parte inferior da chapa de alumínio, é produzido gás hidrogênio.
 Esse gás hidrogênio pode se acumular sob a chapa e explodir durante o processo de corte. Certifique-se de que a mesa de água esteja adequadamente arejada para ajudar a evitar o acúmulo de gás hidrogênio.
- Manuseie todos os cilindros de gás de acordo com os padrões de segurança publicados pela U.S. Compressed Gas Association (CGA), American Welding Society (AWS), Canadian Standards Association (CSA) ou outros códigos locais ou nacionais.
- Os cilindros de gás comprimido devem ser mantidos adequadamente. Nunca tente usar um cilindro que esteja vazando, rachado ou que apresente outros sinais de danos físicos.
- Todos os cilindros de gás devem ser fixados em uma parede ou em um rack para evitar que sejam derrubados acidentalmente.

- Se um cilindro de gás comprimido não estiver sendo usado, recoloque a tampa protetora da válvula.
- Nunca tente consertar cilindros de gás comprimido.
- Mantenha os cilindros de gás comprimido longe de calor intenso, faíscas ou chamas.
- Limpe o ponto de conexão do cilindro de gás comprimido abrindo a válvula momentaneamente antes de instalar um regulador.
- Nunca lubrifique as válvulas do cilindro de gás comprimido ou os reguladores de pressão com qualquer tipo de óleo ou graxa.
- Nunca use um cilindro de gás comprimido ou um regulador de pressão para qualquer finalidade diferente daquela a que se destina.
- Nunca use um regulador de pressão para qualquer outro gás que não seja o pretendido.
- Nunca use um regulador de pressão que esteja vazando ou que tenha outros sinais de danos físicos.
- Nunca use mangueiras de oxigênio e reguladores de pressão para qualquer outro gás que não seja o oxigênio.
- Nunca use uma mangueira de gás que esteja vazando ou que tenha outros sinais de danos físicos.

Consulte o site **www.lincolnelectric.com/safety** para obter mais informações de segurança.

1.10 Índice do panfleto de normas de segurança

Para obter mais informações sobre as práticas de segurança a serem adotadas com o equipamento de corte a arco plasma, consulte as seguintes publicações:

- Norma AWN da AWS, Arc Welding and Cutting Noise (Ruído de corte e soldagem a arco), disponível na American Welding Society, 550 NW LeJeune Road, Miami, FL 33126.
- Norma C5.2 da AWS, Recommended Practices for Plasma Arc Cutting (Práticas recomendadas para corte por arco de plasma), disponível na American Welding Society, 550 NW LeJeune Road, Miami, FL 33126.
- Norma FSW da AWS, Fire Safety in Welding and Cutting (Segurança contra incêndio em soldagem e corte), disponível na American Welding Society, 550 NW LeJeune Road, Miami, FL 33126.
- Norma F4.1 da AWS, Recommended Safe Practices for Preparation for Welding and Cutting of Containers and Piping (Práticas seguras recomendadas para a preparação para soldagem e corte de contêineres e tubulações), disponível na American Welding Society, 550 NW LeJeune Road, Miami, FL 33126.
- Norma ULR da AWS, Ultraviolet Reflectance of Paint (Refletância ultravioleta de tinta), disponível na American Welding Society, 550 NW LeJeune Road, Miami, FL 33126.
- Norma Z49.1 da AWS/ANSI, Safety in Welding, Cutting, and Allied Processes, (Segurança em processos de soldagem, corte e afins) disponível na American Welding Society, 550 NW LeJeune Road, Miami, FL 33126.
- Norma Z41.1 da ANSI, Standard For Men's Safety-Toe Footwear (Norma para calçados masculinos com biqueira de segurança), disponível na American National Standards Institute, 11 West 42nd Street, New York, NY 10036.
- Norma Z49.2 da ANSI, Fire Prevention in the Use of Cutting and Welding Processes (Prevenção contra incêndios no uso de processos de corte e soldagem), disponível na American National Standards Institute, 11 West 42nd Street, New York, NY 10036.
- Norma Z87.1 da ANSI, Safe Practices For Occupation and Educational Eye and Face Protection (Práticas seguras para proteção ocupacional e educacional dos olhos e da face), disponível na American National Standards Institute, 11 West 42nd Street, New York, NY 10036.
- Norma Z88.2 da ANSI, Respiratory Protection (Proteção respiratória), disponível na American National Standards Institute, 11 West 42nd Street, New York, NY 10036.
- Norma 29CFR 1910.252 da OSHA, Safety and Health Standards (Normas de segurança e saúde), disponível no U.S. Government Printing Office, Washington, D.C. 20402.
- Norma 51 da NFPA, Oxygen Fuel Gas Systems for Welding, Cutting, and Allied Processes (Oxigênio: sistemas de gás combustível para soldagem, corte e processos afins), disponível na National Fire Protection Association, 1 Batterymarch Park, Quincy, MA 02269.

- Norma 51B de NFPA, Cutting and Welding Processes (Processos de corte e soldagem), disponível na National Fire Protection Association, 1 Batterymarch Park, Quincy, MA 02269.
- Norma 70 da NFPA, National Electrical Code (Código elétrico nacional), disponível na National Fire Protection Association, 1 Batterymarch Park, Quincy, MA 02269.
- Panfleto P–1 do CGA, Safe Handling of Compressed Gases in Containers (Manuseio seguro de gases comprimidos em recipientes), disponível na Compressed Gas Association, 1725 Jefferson Davis Highway, Suite 1004, Arlington, VA 22202.
- Panfleto P-14 do CGA Accident Prevention in Oxygen-Rich and Oxygen-Deficient Atmospheres (Prevenção de acidentes em atmosferas ricas em oxigênio e deficientes em oxigênio), disponível na Compressed Gas Association, 1725 Jefferson Davis Highway, Suite 1004, Arlington, VA 22202.
- Panfleto TB–3 do CGA, Hose Line Flashback Arrestors (Corta-chamas de linha de mangueira), disponível na Compressed Gas Association, 1725 Jefferson Davis Highway, Suite 1004, Arlington, VA 22202.
- Norma W117.2 da CSA, Safety in Welding, Cutting, and Allied Processes (Segurança em processos de soldagem, corte e afins), disponível na Canadian Standards Association, 178 Rexdale Boulevard, Toronto, Ontário M9W IR3, Canadá.
- Código Elétrico Canadense Parte 1, Safety Standard for Electrical Installations (Norma de segurança para instalações elétricas), disponível na Canadian Standards Association, 178 Rexdale Boulevard, Toronto, Ontário M9W 1R3, Canadá.

2.0 Tabelas de corte para tochas de plasma LC300M

2.1 Visão geral

As tochas de plasma Magnum[®] PRO LC300M padronizadas e de desconexão rápida usam as mesmas tabelas de corte. Essas tabelas de corte foram fornecidas como um guia para a configuração da máquina. Variações na espessura da placa, grau ou composição do aço, acabamento superficial e aplicação afetarão os parâmetros da tabela de corte.

Para uma corrente específica, as espessuras na extremidade superior das tabelas de corte (materiais mais finos) fornecerão velocidades de corte mais rápidas às custas do aumento do chanfro da borda. As espessuras na extremidade inferior (materiais mais espessos) darão velocidades de corte mais baixas com maiores sobras. As espessuras na faixa intermediária em relação à espessura proporcionarão uma qualidade de corte ideal em relação à velocidade, chanfro da borda e sobras. Portanto, a corrente de corte deve ser selecionada com base na necessidade do cliente: velocidade de corte mais rápida, qualidade de corte ideal ou cortes de separação.

Os dados da tabela de corte podem ser visualizados na interface de usuário do FineLine[®] ou conforme publicado neste documento.

A versão mais recente de toda a documentação e das tabelas de corte pode ser baixada em www.lincolnelectric.com.

2.2 Descrição dos valores da tabela de corte

Espessura do material

Espessura do material a ser cortado. Se a espessura do material da placa desejada não for mostrada, escolha a espessura disponível mais próxima usando a interface do usuário do FineLine. A altura de corte, a tensão do arco e a velocidade devem ser interpoladas com base nas espessuras adjacentes mais próximas na tabela de corte.

Qualidade de corte

Qualidade de corte*	Velocidade de deslocamento	Ângulo do chanfro	Quantidade de impurezas			
P = Produção	Alta	Alto	Mínimo a médio			
Q = Qualidade	Média	Médio	Mínima			
O = Ótima	Média	Mínimo	Nenhuma a mínima			
S = Separação	Baixa	Mínimo a médio	Média a alta			

*OBSERVAÇÃO: As seleções de qualidade de corte têm como objetivo orientar o operador para o melhor ponto de partida. Teste primeiro. Uma seleção diferente pode obter um corte melhor para a aplicação.

Pressão do gás

As pressões do gás são fixadas e definidas pela interface do usuário do FineLine para corresponder à tabela de corte e dependem do tipo de material, da espessura do material e da corrente de corte.

Tensão do arco

A tensão do arco publicada é um bom ponto de partida, mas pequenos ajustes podem melhorar a qualidade do corte. Quaisquer alterações na velocidade de corte, altura de corte ou pressão do gás do plasma afetarão a tensão do arco. À medida que o eletrodo se desgasta, a altura de corte efetiva aumenta elevando a tensão do arco, e um ajuste nele pode ser necessário para manter a qualidade de corte ideal. Com cabos longos da tocha, a tensão pode precisar ser aumentada para compensar a queda de tensão nos cabos.

Velocidade de deslocamento

A velocidade de deslocamento é determinada pela amperagem e pelo tipo e espessura do material. As alterações na velocidade de deslocamento são feitas pelo CNC.

Altura de corte

A altura de corte é a distância da ponta da tocha até o topo da placa. Se estiver usando o controle de tensão do arco, a configuração da tensão do arco substituirá a configuração da altura de corte para manter a tensão definida. A tensão do arco é uma função direta da altura de corte.

Altura de perfuração

A altura de perfuração é a distância recomendada da ponta da tocha até o topo da placa para minimizar os respingos que voltam à tocha durante a perfuração. Perfurar a uma altura menor pode causar danos à tampa de proteção, afetando a qualidade do corte.

Tempo de perfuração

O tempo de perfuração é a quantidade de tempo que leva para perfurar a placa. Um tempo de perfuração muito curto pode causar danos às peças consumíveis, pois o controle de altura abaixaria a tocha para cortar a altura antes de perfurar a placa. Um tempo de perfuração muito longo pode resultar na perda do arco transferido, pois o metal sob a tocha foi removido.

Largura de corte

A largura de corte é a quantidade de material removida pelo processo de corte por plasma. Use esse valor no CNC para compensar o caminho de corte a fim de produzir uma peça com o tamanho correto. A largura de corte é uma função da velocidade de corte e deve ser ajustada de acordo com as mudanças de velocidade dos valores da tabela de corte.

Altura de transferência

A altura de transferência é a altura inicial acima da placa para estabelecer um arco piloto e transferir o arco para a placa. Se a altura de transferência for muito alta, isso resultará na falha da transferência do arco para a placa. A altura de transferência normalmente é menor do que a de perfuração. Uma vez que o arco tenha sido transferido, o controle de movimento/altura deve começar a retrair para perfurar a altura dentro de 15 ms ou a vida útil das peças consumíveis e a qualidade do corte serão afetadas negativamente.

2.3 Seleção das peças consumíveis

Aço macio - Plasma de oxigênio/Proteção de ar*

	Tampa externa	Tampa de proteção	Tampa de retenção	Bocal	Anel em espiral	Eletrodo	Tocha
	BK602365	BK602340	BK602338	BK602312	BK602354	BK602300	BK602622, BK602625
30 A							
	BK602365	BK602342	BK602338	BK602314	BK602356	BK602301	BK602622, BK602625
80 A							
	BK602365	BK602343	BK602339	BK602315	BK602358	BK602309	BK602622, BK602625
140 A							
	BK602365	BK602348	BK602332	BK602316	BK602357	BK602302	BK602622, BK602625
170 A							
	BK602365	BK602345	BK602332	BK602317	BK602359	BK602304	BK602622, BK602625
200 A							
	BK602365	BK602346	BK602369	BK602318	BK602360	BK602305	BK602622, BK602625
300 A							

^{*} Proteção de oxigênio no lugar de Proteção de ar a 30 A.

Aço inoxidável - Plasma de ar/Proteção de nitrogênio*

	Tampa externa	Tampa externa Tampa de Tampa de Boo proteção retenção				Eletrodo	Tocha
	BK602365	BK602341	BK602344	BK602313	BK602355	BK602303	BK602622, BK602625
30 A							
	BK602365	BK602342	BK602338	BK602314	BK602356	BK602301	BK602622, BK602625
80 A							
	BK602365	BK602343	BK602339	BK602315	BK602358	BK602309	BK602622, BK602625
140 A							
	BK602365	BK602348	BK602332	BK602316	BK602357	BK602302	BK602622, BK602625
170 A							
	BK602365	BK602345	BK602332	BK602317	BK602359	BK602304	BK602622, BK602625
200 A							
	BK602365	BK602346	BK602369	BK602319	BK602360	BK602305	BK602622, BK602625
300 A							

^{*} Proteção de ar no lugar de proteção de nitrogênio a 30 A.

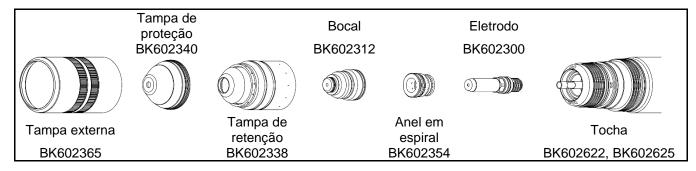
Aço inoxidável - Proteção de nitrogênio/plasma H17

	Tampa externa	Tampa de proteção	Tampa de retenção	Bocal	Anel em espiral	Eletrodo	Tocha
	BK602365	BK602342	BK602347	BK602325	BK602354	BK602310	BK602622, BK602625
80 A						0)	
	BK602365	BK602352	BK602339	BK602327	BK602358	BK602311	BK602622, BK602625
140 A							
	BK602365	BK602345	BK602332	BK602317	BK602358	BK602311	BK602622, BK602625
170 A						0)	
	BK602365	BK602345	BK602332	BK602328	BK602363	BK602311	BK602622, BK602625
200 A						0)	
	BK602365	BK602353	BK602336	BK602320	BK602364	BK602311	BK602622, BK602625
300 A							

Alumínio - Plasma de ar/Proteção de nitrogênio

	Tampa externa	Tampa de proteção	Tampa de retenção	Bocal	Anel em espiral	Eletrodo	Tocha
	BK602365	BK602340	BK602338	BK602312	BK602354	BK602300	BK602622, BK602625
30 A							
	BK602365	BK602342	BK602338	BK602314	BK602356	BK602301	BK602622, BK602625
80 A						0)	
	BK602365	BK602343	BK602339	BK602315	BK602358	BK602309	BK602622, BK602625
140 A						0)	
	BK602365	BK602348	BK602332	BK602316	BK602357	BK602302	BK602622, BK602625
170 A						0)	
	BK602365	BK602345	BK602332	BK602317	BK602359	BK602304	BK602622, BK602625
200 A						0)	
	BK602365	BK602346	BK602369	BK602319	BK602360	BK602305	BK602622, BK602625
300 A						0)	

2.4 Tabelas de corte


As tabelas de corte mostradas nas páginas a seguir destinam-se a dar ao operador o melhor ponto de partida para usar ao fazer um corte em um determinado tipo de material e espessura. Pequenos ajustes podem ter que ser feitos para obter o melhor corte.

Use sempre peças consumíveis Lincoln Electric originais para ter uma qualidade de corte ideal e uma boa vida útil das peças consumíveis.

Índice da tabela de corte

Motorial (alacca)	Corrente	Gás de	Gás de	Referência de
Material (classe)	Corrente	plasma	proteção	página
Aço macio (A36)	30 Amperes	Oxigênio	Oxigênio	Página 17
Aço macio (A36)	80 Amperes	Oxigênio	Ar	Página 18
Aço macio (A36)	140 Amperes	Oxigênio	Ar	Página 19
Aço macio (A36)	170 Amperes	Oxigênio	Ar	Página 20
Aço macio (A36)	200 Amperes	Oxigênio	Ar	Página 21
Aço macio (A36)	300 Amperes	Oxigênio	Ar	Página 22
Aço inoxidável	30 Amperes	Ar	Ar	Página 23
Aço inoxidável	80 Amperes	Ar	Nitrogênio	Página 24
Aço inoxidável	140 Amperes	Ar	Nitrogênio	Página 25
Aço inoxidável	170 Amperes	Ar	Nitrogênio	Página 26
Aço inoxidável	200 Amperes	Ar	Nitrogênio	Página 27
Aço inoxidável	300 Amperes	Ar	Nitrogênio	Página 28
Aço inoxidável	80 Amperes	H17	Nitrogênio	Página 29
Aço inoxidável	140 Amperes	H17	Nitrogênio	Página 30
Aço inoxidável	170 Amperes	H17	Nitrogênio	Página 31
Aço inoxidável	200 Amperes	H17	Nitrogênio	Página 32
Aço inoxidável	300 Amperes	H17	Nitrogênio	Página 33
Alumínio	30 Amperes	Ar	Nitrogênio	Página 34
Alumínio	80 Amperes	Ar	Nitrogênio	Página 35
Alumínio	140 Amperes	Ar	Nitrogênio	Página 36
Alumínio	170 Amperes	Ar	Nitrogênio	Página 37
Alumínio	200 Amperes	Ar	Nitrogênio	Página 38
Alumínio	300 Amperes	Ar	Nitrogênio	Página 39

Aço macio - 30 Amperes - Plasma de oxigênio/Proteção de oxigênio

Sistema imperial*

Espessura do material (pol)	Qualidade de corte	Fluxo prévio (psi)	Plasma (psi)	Proteção (psi)	Fluxo posterior (psi)	Tensão do arco (volts)	Velocidad e de deslo- camento (ipm)	Altura de corte (pol)	, ,	Tempo de perfuração (mseg)	
0,0239 24 Ga	Р					116	150	0,090	0,100		0,056
0,0299 22 Ga	Р						125	0,105	0,120	100	0,056
0,0359 20 Ga	Q					120	105	0,103	0,120	100	0,058
0,0478 18 Ga	Q						100	0,125	0,130		0,062
0,0598 16 Ga	0	38	82	9	82	126	75	0,140		200	0,064
0,0747 14 Ga	0					128	65	0,145	0,150	200	0,066
0,1046 12 Ga	0					131	55	0,145		300	0,077
0,1345 10 Ga	0					133	40	0,160	0,160	400	0,085
0,1875 3/16	S					141	30	0,200	0,200	700	0,095

Sistema métrico*

Espessura do material (mm)	Qualidad e de corte	Fluxo prévio (bar)	Plasma (bar)	Proteção (bar)	Fluxo posterior (bar)	Tensão do arco (volts)	Velocidad e de deslo- camento(mm/m)	Altura de		Tempo de perfuração (mseg)		
0,6	Р					116	3850	2,3	2,5		1 1	
0,8	Р						3050	2,7	3,0	100	1,4	
1,0	Р						120	2625	2,8	3,1	100	1,5
1,2	Q							2550	3,1	3,3		1.6
1,5	Q	2,62	5,65	0,62	5,65	126	1950	3,5		190	1,6	
2,0	0	2,02	5,05	0,62	52 5,05	0,02 3,03	128	1625	3,7	3,8	210	1,7
2,5	0					130	1450	3,1		280	1,9	
3,0	0					132	1225	3,8	3,9	340	2,0	
4,0	0					136	900	4,5	4,5	530	2,3	
5,0	S					142	725	5,2	5,2	750	2,5	

T :	l	- 1		Di		Proteção		Fluxo posterior		Tensão do			Altura de		Tempode
Tipo d	le gás	Fluxo	luxo prévio		sma	Pro	eçao	pos	terior	arco	aes	locamento	marcação		perfuração
(Plasma)	(Proteção)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(volts)	(ipm)	(mm/min)	(pol)	(mm)	(mseg)
Nitrogênio	Nitrogêni	25	1,72	25	1,72	25	1,72	25	1,72	126	250	6350	0,1	2,5	0
Argônio	Ar	38	2,62	40	2,76	25	1,72	40	2,76	68	100	2540	0,1	2,5	0

^{*} Use uma altura de transferência de arco (altura de ignição) de 2,5 mm (0,100") para corte e marcação.

Aço macio - 80 Amperes - Plasma de oxigênio/Proteção de ar

Tampa de Bocal Eletrodo proteção BK602342 BK602314 BK602301 Tampa de Anel em Tampa externa Tocha retenção espiral BK602338 BK602365 BK602356 BK602622, BK602625

Sistema imperial*

Espess mate (po	erial	Qualidad e de corte	Fluxo prévio (psi)	Plasma (psi)	Proteção (psi)	Fluxo posterior (psi)	Tensão do arco (volts)	Velocidad e de deslo- camento (ipm)			Tempo de perfuração (mseg)	_
0,1345	10 Ga	Р					105	180			150	0,078
0,1875	3/16	Р					105	155	0,060	0,400	150	0,077
0,2500	1/4	Q	21	74	20	74	106	110		0,400	250	0,078
0,3125	5/16	Q	Z I	74	20	74	111	96			350	0,081
0,3750	3/8	0					113	75	0,100	0.450	450	0,084
0,5000	1/2	Q					116	50		0,450	700	0,090

Sistema métrico*

Espessura do material (mm)	Qualidade de corte	Fluxo prévio (bar)	Plasma (bar)	Proteção (bar)	Fluxo posterior (bar)	Tensão do arco (volts)	Velocidade de deslo- camento (mm/m)	Altura de		Tempo de perfuração (mseg)	
4	Р					105	4300			150	
5	Р					103	3775	1,5	10.2	160	2,0
6	Q	1,45	5,10	1,38	5,10	106	3050		10,2	230	
8	Q	1,45	5,10	1,30	5,10	111	2425			350	2,1
10	0		0,10			113	1800	2,5	11 /	490	2,2
12	Q					115	1400		11,4	640	2,3

								FI	uxo	Tensão do	Velo	cidade de	Altu	ıra de	Tempode
Tipo d	le gás	Fluxo	prévio	Pla	ısma	Prof	teção	pos	terior	arco	des	ocamento	mar	cação	perfuração
(Plasma)	(Proteção)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(volts)	(ipm)	(mm/min)	(pol)	(mm)	(mseg)
Nitrogênio	Nitrogêni	21	1,45	23	1,59	23	1,59	23	1,59	130	250	6350	0,1	2,5	0
Argônio	Ar	21	1,45	40	2,76	23	1,59	40	2,76	64	100	2540	0,1	2,5	0

^{*} Use uma altura de transferência de arco (altura de ignição) de 5,1 mm (0,200") para corte e 2,5 mm (0,100") para marcação.

Aço macio - 140 Amperes - Plasma de oxigênio/Proteção de ar

Tampa de Bocal Eletrodo proteção BK602343 BK602315 BK602309 Tampa de Anel em Tampa externa Tocha retenção espiral BK602339 BK602365 BK602358 BK602622, BK602625

Sistema imperial*

Espessura do material (pol)	Qualidad e de corte	Fluxo prévio (psi)	Plasma (psi)	Proteção (psi)	Fluxo posterior (psi)	Tensão do arco (volts)	Velocidad e de deslo- camento (ipm)		,	Tempo de perfuração (mseg)	U	
0,1345 10 Ga	Р					110	260		0,200	400		
0,1875 3/16	Р			65		118	205		0,200	500	0,094	
0,2500 1/4	Р			05		117	160	0,105	0,225	600		
0,3125 5/16	Р					118	140	0,105	0,250	700	0,096	
0,3750 3/8	Р			60		110	120		0,275	800	0,097	
0,5000 1/2	0	15	66		66	123	86			500	0,103	
0,6250 5/8	0			45		126	70	0,140	0,500	750	0,105	
0,7500 3/4	0					128	55	0,140	0,300	850	0,112	
1,0000 1	Q			35		134	35	0,160		1250	0,118	
1,2500 1 1/4	Q			33		146	20	0,200	0,400	1500	0,138	**
1,5000 1 ½	S			25		156	12	0,225	0,400	1300	0,160	**

Sistema métrico*

Espessura do material (mm)	Qualidade de corte	Fluxo prévio (bar)	Plasma (bar)	Proteção (bar)	Fluxo posterior (bar)	Tensão do arco (volts)	Velocidade de deslo- camento (mm/m)	Altura de corte (mm)	Altura de perfuração (mm)	Tempo de perfuração (mseg)		
4	Р					118	6000		5,1	440		
5	Р			4,48		110	5050		5,2	510	2,4	
6	Р					117	4325	2.7	5,6	580	2,4	
8	Р			4,47		118	3550	2,7	6,4	700		
10	Р			3,98		119	2925		7,8	760	2,5	
12	0	1,03	4,55	3,33	4,55	122	2375		11,4	570	2,6	
15	0	1,03	4,55	3,10	4,55	125	1900	3,3		680	2,7	
20	0			3,00		129	1325	3,6	12,7	910	2,9	
25	Q			2,46		134	925	4,0		1220	3,0	
30	Q			2,41		143	625	4,8			3,4	**
35	S			2,06		151	400	5,4	10,2	1500	3,8	**
38	S			1,73		156	300	5,7			4,1	**

Marcação* - Para todas as espessuras de material

								FI	uxo	Tensão do	Velo	cidade de	Altu	ra de	Tempode
Tipo c	le gás	Fluxo	prévio	Pla	sma	Prof	teção	pos	terior	arco	des	locamento	marc	cação	perfuração
(Plasma)	(Proteção)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(volts)	(ipm)	(mm/min)	(pol)	(mm)	(mseg)
Nitrogênio	Nitrogêni	15	1,03	19	1,31	19	1,31	19	1,31	153	250	6350	0,1	2,5	0
Argônio	Ar	15	1,03	40	2,76	19	1,31	40	2,76	70	100	2540	0,1	2,5	0

^{*} Use uma altura de transferência de arco (altura de ignição) de 5,1 mm (0,200") para corte e 2,5 mm (0,100") para marcação. ** Início da borda recomendado.

Estas informações estão sujeitas aos controles dos Regulamentos de Administração de Exportação [EAR]. Estas informações não devem ser fornecidas a pessoas que não sejam dos EUA ou transferidas por qualquer meio para qualquer local fora dos Estados Unidos, em desacordo com as exigências dos EAR.

Aço macio - 170 Amperes - Plasma de oxigênio/Proteção de ar

Tampa de Bocal Eletrodo proteção BK602348 BK602316 BK602302 Tampa de Anel em Tampa externa Tocha retenção espiral BK602332 BK602365 BK602357 BK602622, BK602625

Sistema imperial*

		poa	=										
Espessu mater (pol	rial	Qualidad e de corte	Fluxo prévio (psi)	Plasma (psi)	Proteção (psi)	Fluxo posterior (psi)	Tensão do arco (volts)	Velocidad e de deslo- camento (ipm)			Tempo de perfuração (mseg)	_	
0,2500	1/4	Р					120	195	0,080			0,103	٦
0,3125	5/16	Р					123	165	0,100]	250	0,107	
0,3750	3/8	Р					126	135	0,115			0,110	
0,5000	1/2	0			48		127	105	0,125	0,500	400	0,110	
0,6250	5/8	0					130	80	0,140	0,500	550	0,118	
0,7500	3/4	Q	15	70		70	132	65	0,145]	700	0,120	
1,0000	1	Q					137	45	0,165]	1000	0,126	
1,2500	1 1/4	Q					147	25	0,205			0,142	
1,5000	1 ½	Q			38		160	16	0,275		1500	0,175 *	*
1,7500	1 3/4	S			30		168	11	0,325	0,350		0,194 *	*
2,0000	2	S					182	6	0,350		1800	0,240 *	*

Sistema métrico*

Espessura do material (mm)	Qualidade de corte	Fluxo prévio (bar)	Plasma (bar)	Proteção (bar)	Fluxo posterior (bar)	Tensão do arco (volts)	Velocidade de deslo- camento (mm/m)	Altura de corte (mm)	Altura de perfuração (mm)	Tempo de perfuração (mseg)		
6	Р					119	5125	1,9		250	2,6	
8	Р					123	4175	2,6		250	2,7	
10	Р					126	3325	3,0		270	20	
12	0			3,31		127	2825	3,1	12,7	370	2,8	
15	0					129	2200	3,5	12,7	510	2,9	
20	Q	1,00	4,83		4,83	133	1575	3,8		740	3,1	
25	Q	1,00	4,03		4,03	137	1175	4,2		980	3,2	
30	Q			2,81		144	775	4,9		1360	3,5	
35	Q					154	525	6,1		1500	4,0	**
40	Q			2,62		162	375	7,4	0.0	1500	4,6	**
45	S			2,02		169	275	8,3	8,9	1530	5,0	**
50	S					180	175	8,8		1760	5,9	**

Tipo o	le gás	Fluxo	prévio	Pla	ısma	Prof	ecão		uxo terior	Tensão do arco		ocidade de locamento		ra de cacão	Tempode perfuração
(Plasma)	(Proteção)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(volts)	(ipm)	(mm/min)	(pol)	(mm)	(mseg)
Nitrogênio	Nitrogêni	15	1,03	17	1,17	17	1,17	17	1,17	135	250	6350	0,1	2,5	0
Argônio	Ar	15	1,03	40	2,76	17	1,17	40	2,76	73	100	2540	0,1	2,5	0

^{*} Use uma altura de transferência de arco (altura de ignição) de 6,4 mm (0,250") para corte e 2,5 mm (0,100") para marcação. ** Início da borda recomendado.

Aço macio - 200 Amperes - Plasma de oxigênio/Proteção de ar

Tampa de Bocal Eletrodo proteção BK602345 BK602317 BK602304 Tampa de Anel em Tampa externa Tocha retenção espiral BK602332 BK602365 BK602359 BK602622, BK602625

Sistema imperial*

Espessura do material	Qualidad e de corte	Fluxo prévio (psi)	Plasma (psi)	Proteçã o (psi)	Fluxo posterior (psi)	Tensão do arco	Velocidad e de deslo- camento	Altura de corte	, ,	Tempo de perfuração		
(pol)	COILC	(631)		(рзі)	(p3i)	(volts)	(ipm)	(pol)	(pol)	(mseg)	(pol)	
0,2500 1/4	Р					121	230	0,080	0,250	500	0,108	
0,3750 3/8	Р			57		126	145	0,100	0,230	600	0,115	
0,5000 1/2	Р					130	120	0,115		350	0,120	
0,6250 5/8	Р					132	100	0,130		400	0,120	
0,7500 3/4	0	13	74		74	137	75	0,150	0,500	450	0,130	
1,0000 1	0	13	74	52	74	144	50	0,175		650	0,142	
1,2500 1 1/4	Q					150	30	0,200		1850	0,146	
1,5000 1 ½	Q					163	20	0,275	0,600	3600	0,180	
1,7500 1 3/4	S			42		174	14	0,325	0.250	1500	0,200	**
2,0000 2	S			43		186	7	0,350	0,350	1500	0,220	**

Sistema métrico*

Sisterna		1										
		Eluvo			Fluve		Velocidade	Altura			Largura	П
Espessura do	Qualidade	Fluxo prévio	Plasma	Proteção	Fluxo posterior	Tensão	de deslo-	de	Altura de	Tempo de	de	
material	de corte	(bar)	(bar)	(bar)	(bar)	do arco	camento	corte	perfuração	perfuração	corte	
(mm)		(bai)			(Dai)	(volts)	(mm/m)	(mm)	(mm)	(mseg)	(mm)	
6	Р					120	6075	2,0	6.4	490	2,7	
8	Р			3,93		124	4725	2,3	6,4	550	2,8	
10	Р			3,93		127	3600	2,6	7,3	560	2,9	
12	Р					129	3200	2,8	11,3	410	3 (
15	Р			3,68		131	2675	3,2		390	3,0	
20	0	0,90	5,10		5,10	138	1800	3,9	12,7	480	3,3	
25	0	0,90	3,10	2.50	5,10	144	1300	4,4	12,7	640	3,6	
30	Q			3,59		148	900	4,9		1520	3,7	
35	Q					157	625	6,1	14,0	2750	4,2	
40	S			3,40		166	450	7,4			4,7	**
45	S			2,96		175	350	8,3	8,9	1500	5,1	**
50	S			2,90		184	200	8,8			5,5	**

Marcação* – Para todas as espessuras de material

Tipo c	le gás	Fluxo	prévio	Pla	sma	Prof	teção		uxo terior	Tensão do arco		ocidade de locamento		ra de cação	Tempode perfuração
(Plasma)	(Proteção)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(volts)	(ipm)	(mm/min)	(pol)	(mm)	(mseg)
Nitrogênio	Nitrogêni	13	0,90	17	1,17	17	1,17	17	1,17	139	250	6350	0,1	2,5	0
Argônio	Ar	13	0,90	40	2,76	17	1,17	40	2,76	76	100	2540	0,1	2,5	0

^{*} Use uma altura de transferência de arco (altura de ignição) de 6,4 mm (0,250") para corte e 2,5 mm (0,100") para marcação. ** Início da borda recomendado.

Estas informações estão sujeitas aos controles dos Regulamentos de Administração de Exportação [EAR]. Estas informações não devem ser fornecidas a pessoas que não sejam dos EUA ou transferidas por qualquer meio para qualquer local fora dos Estados Unidos, em desacordo com as exigências dos EAR.

Aço macio - 300 Amperes - Plasma de oxigênio/Proteção de ar

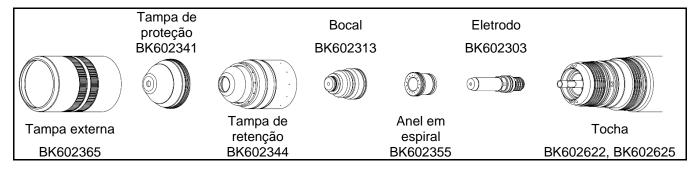
Tampa de Bocal Eletrodo proteção BK602346 BK602318 BK602305 Tampa de Anel em Tampa externa Tocha retenção espiral BK602369 BK602365 BK602360 BK602622, BK602625

Sistema imperial*

							•				
							Velocidad				
	Qualidad	Fluxo	Plasma	Proteçã	Fluxo		ede		Altura de		Largura
Espessura do	e de	prévio		0	posterior	Tensão	deslo-	Altura	perfuraçã	Tempo de	de
material	corte	(psi)	(psi)	(psi)	(psi)	do arco	camento	de corte	0	perfuração	corte
(pol)						(volts)	(ipm)	(pol)	(pol)	(mseg)	(pol)
0,5000 1/2	Р		71		71	131	135			500	0,150
0,6250 5/8	Р			58		122	115	0,140		550	0,144
0,7500 3/4	Q					126	90	0,140		680	0,148
0,8750 7/8	0					127	80		0,550	800	0,153
1,0000 1	0					121	70	0,200		900	0,155
1,2500 1 1/4	0			49		133	50	0,175		1200	0,165
1,5000 1 ½	0	10	56	49	56	136	37	0,200		1800	0,175
1,7500 1 3/4	Q		50		50	143	30	0,250	0,850	3200	0,188
2,0000 2	Q					152	21	0,275			0,205 **
2,2500 2 1/4	Q			44		157	16	0,300			0,217 **
2,5000 2 ½	S					162	12		0,450	1500	0,240 **
2,7500 2 3/4	S			35		168	8	0,325			0,245 *
3,0000 3	S					174	6				0,254 *

Sistema métrico*

<u> </u>												
Espessura do	Oualidade	Fluxo	Plasma	Proteção	Fluxo	Tensão	Velocidade de deslo-	Altura de	Altura de	Tempo de	Largura de	1
	de corte	prévio	(bar)	(bar)	posterior	do arco	camento	corte		perfuração		
	de corte	(bar)	(Dai)	(Dai)	(bar)	(volts)		(mm)	l'	, ,		
(mm)						` /	(mm/m)	(111111)	(mm)	(mseg)	(mm)	4
12	Р		5,12	4,00	5,12	133	3550			490	3,8	
15	Р		4,15	4,00	4,15	124	3050	3,6		540	3,7	
20	Q			3,81		126	2200		14,0	720	3,8	
25	0					127	1800	5,1	14,0	890	3,9	
30	0					131	1400	4,2		1120	4,1	
35	0	0,69		3,38		135	1100	4,8		1510	4,3	
40	0	0,09	3,86	3,30	3,86	136	950	5,1	16,3	2220	4,4	
45	Q		3,00		3,00	144	750	6,4	21,6	3200	4,8	
50	Q					151	550	6,9			5,2	**
60	S			2,76		159	350	7,9	11,4	1500	5,8	**
70	S			2,41		168	200	8,3	11,4	1300	6,2	**
75	S			2,41		173	150	0,3			6,4	**


Marcação* - Para todas as espessuras de material

Tipo d	le gás	Fluxo	prévio	Pla	sma	Prof	teção		uxo terior	Tensão do arco		ocidade de locamento		ra de cação	Tempode perfuração
(Plasma)	(Proteção)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(volts)	(ipm)	(mm/min)	(pol)	(mm)	(mseg)
Nitrogênio	Nitrogêni	15	1,03	15	1,03	15	1,03	15	1,03	118	250	6350	0,1	2,5	0
Argônio	Ar	15	1,03	40	2,76	15	1,03	40	2,76	67	100	2540	0,1	2,5	0

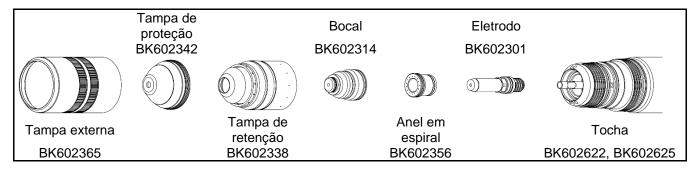
^{*} Use uma altura de transferência de arco (altura de ignição) de 7,6 mm (0,300") para corte e 2,5 mm (0,100") para marcação. ** Início da borda recomendado.

Estas informações estão sujeitas aos controles dos Regulamentos de Administração de Exportação [EAR]. Estas informações não devem ser fornecidas a pessoas que não sejam dos EUA ou transferidas por qualquer meio para qualquer local fora dos Estados Unidos, em desacordo com as exigências dos EAR.

Aço inoxidável - 30 Amperes - Plasma de ar /Proteção de ar

Sistema imperial*

Espessura do material (pol)	Qualidad e de corte	Fluxo prévio (psi)	Plasma (psi)	Proteçã o (psi)	Fluxo posterior (psi)	Tensão do arco (volts)	Velocidad e de deslo- camento (ipm)		, ,	Tempo de perfuração (mseg)	_
0,0375 20 Ga	Р					73	200	0,025		100	0,038
0,0500 18 Ga	Р	33	79	28	79	73	165	0,025	0,150	100	0,040
0,0625 16 Ga	Q	33	19	20	19	75	125	0,030	0,130	200	0,040
0,0781 14 Ga	Q					77	90	0,015		300	0,035


Sistema métrico*

Espessura do material (mm)	Qualidade de corte	nrevio	Plasma (bar)	Proteção (bar)	Fluxo posterior (bar)	Tensão do arco (volts)	Velocidade de deslo- camento (mm/m)	de		Tempo de perfuração (mseg)	
1,0	Р					73	4975	0.6		100	
1,2	Р	2,28	5 1 E	1,93	5,45	73	4400	0,6	20	100	1,0
1,5	Q	2,20	5,45	1,93	5,45	74	3475	0,7	3,8	170	
2,0	Q					77	2250	0,4		300	0,9

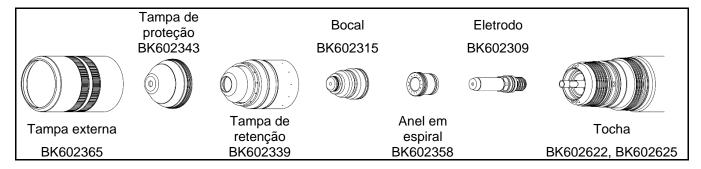
Tipo c	le gás	Fluxo	prévio	Pla	sma	Prof	teção		uxo terior	Tensão do arco		ocidade de locamento		ra de cação	Tempode perfuração
(Plasma)	(Proteção)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(volts)	(ipm)	(mm/min)	(pol)	(mm)	(mseg)
Nitrogênio	Nitrogêni	20	1,38	20	1,38	20	1,38	20	1,38	93	250	6350	0,1	2,5	0
Argônio	Ar	38	2,62	40	2,76	25	1,72	40	2,76	52	100	2540	0,1	2,5	0

^{*} Use uma altura de transferência de arco (altura de ignição) de 3,8 mm (0,150") para corte e 3,8 mm (0,150") para marcação.

Aço inoxidável - 80 Amperes - Plasma de ar /Proteção de nitrogênio

Sistema imperial*

							Velocidad				
	Qualidad	Fluxo	Plasma	Proteçã	Fluxo		ede		Altura de		Largur
Espessura do	e de	prévio	(psi)	0	posterior	Tensão	deslo-	Altura	perfuraçã	Tempo de	a de
material	corte	(psi)	(psi)	(psi)	(psi)	do arco	camento	de corte	0	perfuração	corte
(pol)						(volts)	(ipm)	(pol)	(pol)	(mseg)	(pol)
0,1406 10 Ga	Р					129	120		0,200	500	0,088
0,1875 3/16	Р					130	100	0,130	0,200	600	0,090
0,2500 1/4	Q	24	79	19	79	131	86		0,225	700	0,092
0,3125 5/16	Q					135	72	0,150	0,250	900	0,093
0,3750 3/8	Q					137	57	0,160	0,275	1000	0,093


Sistema métrico*

Espessura do material (mm)	Qualidade de corte	Fluxo prévio (bar)	Plasma (bar)	Proteção (bar)	Fluxo posterior (bar)	Tensão do arco (volts)	Velocidade de deslo- camento (mm/m)	Altura		Tempo de perfuração (mseg)	
3	Р					129	3200		E 1	470	2,2
4	Р					129	2825	2.2	5,1	540	
5	Р	1,65	5,45	1,31	5,45	130	2500	3,3	5,2	610	2,3
6	Q					131	2275		5,6	680	
8	Q					135	1825	3,8	6,4	900	2,4

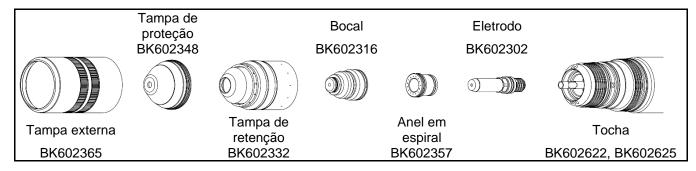
								FI	uxo	Tensão do	Velo	cidade de	Altu	ra de	Tempode
Tipo c	le gás	Fluxo	prévio	Pla	sma	Prot	eção	pos	terior	arco	des	locamento	marc	cação	perfuração
(Plasma)	(Proteção)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(volts)	(ipm)	(mm/min)	(pol)	(mm)	(mseg)
Nitrogênio	Nitrogêni	24	1,65	23	1,59	23	1,59	23	1,59	129	250	6350	0,1	2,5	0
Argônio	Ar	24	1,65	40	2,76	23	1,59	40	2,76	64	100	2540	0,1	2,5	0

^{*} Use uma altura de transferência de arco (altura de ignição) de 5,1 mm (0,200") para corte e 2,5 mm (0,100") para marcação.

Aço inoxidável - 140 Amperes - Plasma de ar /Proteção de nitrogênio

Sistema imperial*

Espessi mate (po	rial	Qualidad e de corte	Fluxo prévio (psi)	Plasma (psi)	Proteçã o (psi)	Fluxo posterior (psi)	Tensão do arco (volts)	Velocidad e de deslo- camento (ipm)			Tempo de perfuração (mseg)	
0,2500	1/4	Р					151	140	0,170	0,250	600	
0,3125	5/16	Р			55		145	124		0,275	700	0,105
0,3750	3/8	Q	18	76	55	76	147	100	0,150	0,275	700	
0,5000	1/2	0	10	70		70	150	80		0,300	800	0,108
0,6250	5/8	0			46		156	56	0,200	0,325	1000	0,112
0,7500	3/4	Q			41		164	42	0,240	0,400	1600	0,120


Sistema métrico*

Espessura do material (mm)	Qualidad e de corte	Fluxo prévio (bar)	Plasma (bar)	Proteçã o (bar)	Fluxo posterior (bar)	Tensão do arco (volts)	Velocidad e de deslo- camento (mm/m)	Altura de corte		Tempo de perfuração (mseg)	_
6	Р					152	3650	4,4	6,2	580	
8	Р			3,79		145	3125		7,0	700	2.7
10	Q	1 24	5 Q4	3,79	5 Q4	147	2475	3,8	7,1	710	2,7
12	0	1,24	5,24		5,24	149	2150		7,5	780	
15	0			3,34		154	1600	4,7	8,1	940	2,8
20	Q			2,72		166	950	6,4	10,7	1780	3,1

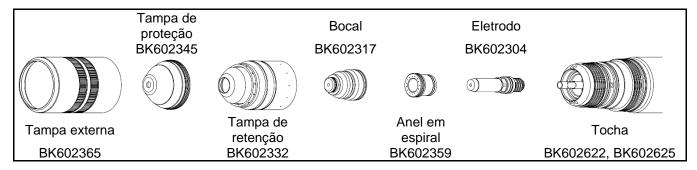
Tipo c	le gás	Fluxo	prévio	Pla	sma	Prof	teção		uxo terior	Tensão do arco		ocidade de locamento		ra de cação	Tempode perfuração
(Plasma)	(Proteção)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(volts)	(ipm)	(mm/min)	(pol)	(mm)	(mseg)
Nitrogênio	Nitrogêni	18	1,24	19	1,31	19	1,31	19	1,31	153	250	6350	0,1	2,5	0
Argônio	Ar	18	1,24	40	2,76	19	1,31	40	2,76	70	100	2540	0,1	2,5	0

^{*} Use uma altura de transferência de arco (altura de ignição) de 5,1 mm (0,200") para corte e 2,5 mm (0,100") para marcação.

Aço inoxidável - 170 Amperes - Plasma de ar /Proteção de nitrogênio

Sistema imperial*

		poa											
								Velocidad					
		Qualidad	Fluxo	Plasma	Proteçã	Fluxo		ede		Altura de		Largur	
Espessi	ura do	e de	prévio	(psi)	0	posterior	Tensão	deslo-	Altura	perfuraçã	Tempo de	a de	
mate	rial	corte	(psi)	(psi)	(psi)	(psi)	do arco	camento	de corte	0	perfuração	corte	
(po	ıl)						(volts)	(ipm)	(pol)	(pol)	(mseg)	(pol)	
0,2500	1/4	Р					152	150	0,130	0,250	600	0,109	
0,3125	5/16	Р					153	128	0,140	0,265	650	0.440	
0,3750	3/8	Q					154	105	0,150	0,275	700	0,110	
0,5000	1/2	0			52		157	85	0,165	0,300	800	0,115	
0,6250	5/8	0	15	80		80	163	66	0,200	0,350	1000	0,122	
0,7500	3/4	0					168	51	0,230	0,400	1200	0,125	
1,0000	1	Q					179	34	0,270	0,550		0,140	
1,2500	1 1/4	Q			45		188	17	0,285	0,400	1500	0,150	**
1,5000	1 ½	S			45		197	9	0,310	0,400		0,164	**


Sistema métrico*

		Fluxo			Fluxo		Velocidade	Altura			Largura	
Espessura do	Qualidade	prévio	Plasma	Proteção	posterior	Tensão	de deslo-	de	Altura de	Tempo de	de	
material	de corte	(bar)	(bar)	(bar)	(bar)	do arco	camento	corte	perfuração	perfuração	corte	
(mm)		(bai)			(Dai)	(volts)	(mm/m)	(mm)	(mm)	(mseg)	(mm)	
6	Р					152	3925	3,2	6,3	590		
8	Р					153	3225	3,6	6,7	650	2,8	
10	Q					154	2600	3,9	7,1	710		
12	0			3,59		156	2275	4,1	7,5	780	2,9	
15	0	1,00	5,52		5,52	161	1800	4,8	8,5	940	3,0	
20	0	1,00	5,52		5,52	170	1225	6,0	10,7	1240	3,2	
25	Q					178	900	6,8	13,7		3,5	
30	Q			3,24		186	550	7,1		1500	3,7	**
35	S			3,10		193	325	7,6	10,2	1500	4,0	**
38	S			3,10		197	225	7,9			4,2	**

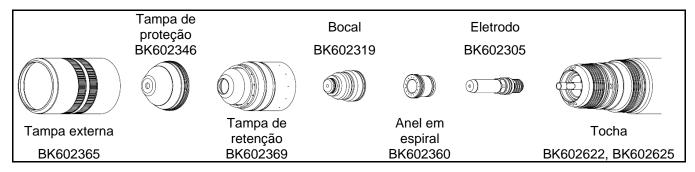
								FI	uxo	Tensão do	Velo	ocidade de	Altu	ra de	Tempode
Tipo d			ısma	Prof	teção	pos	terior	arco	des	locamento	marc	cação	perfuração		
(Plasma)	(Proteção)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(volts)	(ipm)	(mm/min)	(pol)	(mm)	(mseg)
Nitrogênio	Nitrogêni	15	1,03	17	1,17	17	1,17	17	1,17	137	250	6350	0,1	2,5	0
Argônio	Ar	15	1,03	40	2,76	17	1,17	40	2,76	76	100	2540	0,1	2,5	0

^{*} Use uma altura de transferência de arco (altura de ignição) de 6,4 mm (0,250") para corte e 2,5 mm (0,100") para marcação. ** Início da borda recomendado.

Aço inoxidável - 200 Amperes - Plasma de ar /Proteção de nitrogênio

Sistema imperial*

		Eluvo			Fluxo		Velocidade	Altura			Largura
Espessura	Qualidade	prévio	Plasma	Proteção	posterior	Tensão	de	de	Altura de	Tempo de	de
do material	de corte	(psi)	(psi)	(psi)	(psi)	do arco	deslocamento	corte	perfuração	perfuração	corte
(pol)		(psi)			(psi)	(volts)	(ipm)	(pol)	(pol)	(mseg)	(pol)
0,2500 1/4	Р					161	160		0,250	600	
0,3750 3/8	Р					101	110	0,170	0,275	700	0,125
0,5000 1/2	Q			57		164	90	0,170	0,300	800	
0,6250 5/8	0	14	84		84	104	75		0,350	1000	0,120
0,7500 3/4	0	14	04		04	170	60	0,210	0,400	1200	0,135
1,0000 1	Q					180	40	0,270	0,500		0,152
1,2500 1 1/4	S			47		188	20	0,270	0,400	1500	0,155 **
1,5000 1 ½	S					200	10	0,295	0,400		0,175 **


Sistema métrico*

		Fluxo			Fluxo		Velocidade	Altura			Largura	
Espessura	Qualidade	prévio	Plasma	Proteção	posterior	Tensão		de		Tempo de	de	l
do material	de corte	(bar)	(bar)	(bar)	(bar)		deslocamento	corte	perfuração	perfuração	corte	ı
(mm)		(bui)			(bui)	(volts)	(mm/m)	(mm)	(mm)	(mseg)	(mm)	
6	Р						4200		6,3	590		
8	Р					161	3400		6,7	650	3,2	
10	Р			3,93			2725	4,3	7,1	710	3,∠	
12	Q					163	2400		7,5	780		
15	0	0,97	5,79		5.70	164	2000		8,5	940	3,1	
20	0	0,97	5,79	3,83	5,79	171	1450	5,6	10,5	1240	3,5	
25	Q			3,28		179	1050	6,8	12,5	1480	3,8	
30	Q					186	650	6,9	10,9		3,9	**
35	S			3,24		194	375	7,2	10.2	1500	4,2	**
40	S					204	175	7,7	10,2		4,6	**

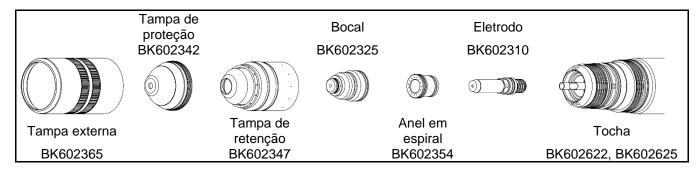
Tipo d	le gás	Fluxo	prévio	Pla	ısma	Pro	teção		uxo terior	Tensão do arco		ocidade de locamento		ra de cação	Tempode perfuração
(Plasma)	(Proteção)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(volts)	(ipm)	(mm/min)	(pol)	(mm)	(mseg)
Nitrogênio	Nitrogêni	14	0,97	17	1,17	17	1,17	17	1,17	137	250	6350	0,1	2,5	0
Argônio	Ar	14	0,97	40	2,76	17	1,17	40	2,76	76	100	2540	0,1	2,5	0

^{*} Use uma altura de transferência de arco (altura de ignição) de 6,4 mm (0,250") para corte e 2,5 mm (0,100") para marcação. ** Início da borda recomendado.

Aço inoxidável - 300 Amperes - Plasma de ar /Proteção de nitrogênio

Sistema imperial*

		Fluxo			Fluxo		Velocidade	Altura			Largura
Espessura	Qualidade	prévio	Plasma	Proteção	posterior	Tensão		de		Tempo de	de
do material	de corte	(psi)	(psi)	(psi)	(psi)	do arco	deslocamento	corte	perfuração	perfuração	corte
(pol)		(psi)			(psi)	(volts)	(ipm)	(pol)	(pol)	(mseg)	(pol)
0,5000 1/2	Р						120		0,350	1000	0,152
0,6250 5/8	Q			50		151	95	0,180	0,375	1200	0,155
0,7500 3/4	0						85		0,400	1400	0,133
1,0000 1	0	14	71		71	171	60	0,350	0,550	1700	0,185
1,2500 1 1/4	Q	14	7 1		'	176	38	0,330	0,700	2500	0,195
1,5000 1 ½	Q			45		182	27				0,210 **
1,7500 1 3/4	S					190	17	0,375	0,400	1500	0,220 **
2,0000 2	S					198	11				0,225 **


Sistema métrico*

		_									
		Fluxo			Fluxo		Velocidade	Altura			Largura
Espessura	Qualidade	prévio	Plasma	Proteção	posterior	Tensão		de	Altura de	Tempo de	
do material	de corte	(bar)	(bar)	(bar)	(bar)		deslocamento	corte	perfuração	perfuração	corte
(mm)		(bai)			(bai)	(volts)	(mm/m)	(mm)	(mm)	(mseg)	(mm)
12	Р			3,45		151	3200	4,6	8,7	960	3,8
15	Q			5,45		151	2600	4,0	9,3	1140	3,9
20	0			3,40		154	2075	5,2	10,7	1440	4,1
25	0			3,12		170	1575	8,6	13,7	1680	4,7
30	Q	0,97	4,90		4,90	175	1125	8,9	16,7	2280	4,9
35	Q					179	825	9,2	13,9	1990	5,1
40	Q			3,10		184	600				5,4
45	S					191	425	9,5	10,2	1500	5,6
50	S					197	300				5,7

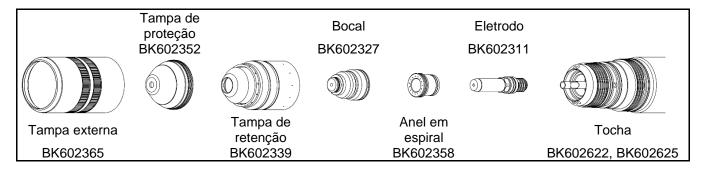
	30.0									-					
	po de gás Fluxo prévio Plasm						FI	uxo	Tensão do	Veld	ocidade de	Altu	ra de	Tempode	
Tipo c	le gás			Pla	sma	Prof	teção	pos	terior	arco	des	locamento	marc	cação	perfuração
(Plasma)	(Proteção)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(volts)	(ipm)	(mm/min)	(pol)	(mm)	(mseg)
Nitrogênio	Nitrogêni	15	1,03	15	1,03	15	1,03	15	1,03	118	250	6350	0,1	2,5	0
Argônio	Ar	14	0,97	40	2,76	15	1,03	40	2,76	62	100	2540	0,1	2,5	0

^{*} Use uma altura de transferência de arco (altura de ignição) de 7,6 mm (0,300") para corte e 2,5 mm (0,100") para marcação. ** Início da borda recomendado.

Aço inoxidável - 80 Amperes - Plasma H17/Proteção de nitrogênio

Sistema imperial*

Espessi mate (po	rial	Qualidad e de corte	Fluxo prévio (psi)	Plasma (psi)	Proteçã o (psi)	Fluxo posterior (psi)	Tensão do arco (volts)	Velocidad e de deslo- camento (ipm)		Altura de perfuraçã o (pol)		
0,1875	3/16	Р		70	2.0	70	138	92	0,120	0,250	600	0,090
0,2500	1/4	Q	24	70	20	70		80		0,275	700	0,093
0,3750	3/8	Q					150	52	0,170	0,300	1000	0,100


Sistema métrico*

Espessura do material (mm)	Qualidade de corte	Fluxo prévio (bar)	Plasma (bar)	Proteção (bar)	Fluxo posterior (bar)	Tensão do arco (volts)	Velocidade de deslo- camento (mm/m)	de		Tempo de perfuração (mseg)	
5	Р					138	2300	3,0	6,4	610	2,3
6	Q	1,65	4,83	1,38	4,83		2100		6,8	680	
8	Q					144	1650	3,7	7,3	860	2,5
10	Q					152	1225	4,5	7,7	1040	2,6

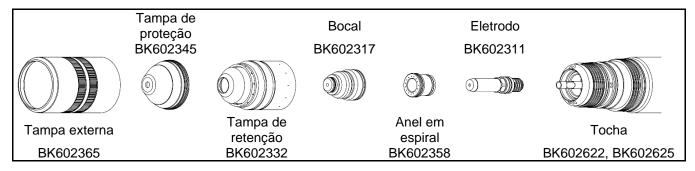
Tipo c	le gás	Fluxo	prévio	Pla	sma	Prof	teção		uxo terior	Tensão do arco		ocidade de locamento		ra de cação	Tempode perfuração
(Plasma)	(Proteção)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(volts)	(ipm)	(mm/min)	(pol)	(mm)	(mseg)
Nitrogênio	Nitrogêni	24	1,65	23	1,59	23	1,59	23	1,59	128	250	6350	0,1	2,5	0
Argônio	Ar	24	1,65	40	2,76	23	1,59	40	2,76	64	100	2540	0,1	2,5	0

^{*} Use uma altura de transferência de arco (altura de ignição) de 5,1 mm (0,200") para corte e 2,5 mm (0,100") para marcação.

Aço inoxidável - 140 Amperes - Plasma H17/Proteção de nitrogênio

Sistema imperial*

		Qualidad	Fluxo	Disame	Proteçã	Fluxo		Velocidad e de		Altura de		Largura
Espessura		e de	prévio	Plasma (psi)	o Î	posterior	Tensão	deslo-		, ,	Tempo de	
materia	I	corte	(psi)	(201)	(psi)	(psi)	do arco	camento	de corte	0	perfuração	
(pol)							(volts)	(ipm)	(pol)	(pol)	(mseg)	(pol)
0,2500 1	/4	Р					159	80	0.450	0,300	700	0.445
0,3125 5/	1 6	Q					160	73	0,150	0,325	800	0,115
0,3750 3	/8	Q	20	74	50	74		65			900	
0,5000 1	/2	0					169	52	0,200	0,350	1000	0,127
0,6250 5	/8	Q					176	38	0,235	0,400	1200	0,136
0,7500 3	/4	Q					182	28	0,260	0,450	1600	0,140


Sistema métrico*

Espessura do material	Qualidade de corte	Fluxo prévio (bar)	Plasma (bar)	Proteção (bar)	Fluxo posterior (bar)	do arco	Velocidade de deslo- camento	de corte	Altura de perfuração	'	corte
(mm)		, ,			` '	(volts)	(mm/m)	(mm)	(mm)	(mseg)	(mm)
6	Р					159	2075	3,8	7,5	680	2,9
8	Q					160	1850		8,3	800	
10	Q	1,38	5,10	3,45	5,10	161	1600	4,0	8,4	910	3,0
12	0					167	1400	4,8	8,7	980	3,2
15	Q					174	1075	5,7	9,8	1140	3,4
20	Q					184	625	6,8	11,8	1720	3,6

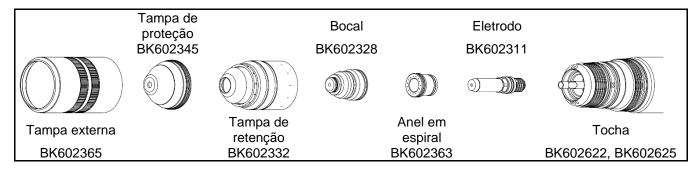
Tipo o	le gás	Fluxo	prévio	Pla	sma	Prof	tecão		uxo terior	Tensão do arco		ocidade de locamento		ra de cacão	Tempode perfuração
(Plasma)	(Proteção)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(volts)	(ipm)	(mm/min)	(pol)	(mm)	(mseg)
Nitrogênio	Nitrogêni	20	1,38	19	1,31	19	1,31	19	1,31	147	250	6350	0,1	2,5	0
Argônio	Ar	20	1,38	40	2,76	19	1,31	40	2,76	78	100	2540	0,1	2,5	0

^{*} Use uma altura de transferência de arco (altura de ignição) de 5,1 mm (0,200") para corte e 2,5 mm (0,100") para marcação.

Aço inoxidável - 170 Amperes - Plasma H17/Proteção de nitrogênio

Sistema imperial*

Espessu mater	ial	Qualidad e de corte	Fluxo prévio (psi)	Plasma (psi)	Proteçã o (psi)	Fluxo posterior (psi)	Tensão do arco		Altura de corte	0	Tempo de perfuração	corte	
(pol)) 3/8	Q					(volts) 158	(ipm) 73	(pol) 0,100	(pol) 0,325	(mseg) 800	(pol) 0,120	Н
0,5000	1/2	Q					169	64	0,180	0,350	900	0,135	
0,6250	5/8	0					174	50	0,225	0,400	1100	0,141	
0,7500	3/4	0	25	72	48	72	181	36	0,250	0,475	1400	0,151	
1,0000	1	Q					195	25	0,340		1500	0,175	**
1,2500	1 1/4	Q					205	17	0,385	0,400	1800	0,187	**
1,5000	1 ½	S					212	12	0,400		2000	0,200	**


Sistema métrico*

Espessura do material (mm)	Qualidade de corte	nrevio	Plasma (bar)	Proteção (bar)	Fluxo posterior (bar)	Tensão do arco (volts)	Velocidade de deslo- camento (mm/m)	de		Tempo de perfuração (mseg)		
10	Q					160	1825	2,8	8,4	810	3,1	
12	Q					167	1675	4,1	8,7	880	3,3	
15	0					173	1375	5,4	9,8	1040	3,5	
20	0	1,70	4,96	3,31	4,96	183	875	6,7	11,8	1410	3,9	
25	Q	1,70	4,90	3,31	4,90	194	650	8,5		1490	4,4	**
30	Q					202	500	9,5	10,2	1720	4,7	**
35	S					209	375	10,0	10,2	1900	4,9	**
38	S					212	300	10,2		2000	5,1	**

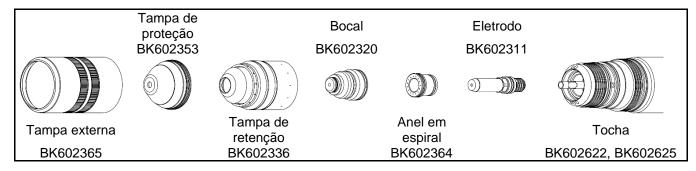
Tipo o	le gás	Fluxo	prévio	Pla	ısma	Prof	teção		uxo terior	Tensão do arco		ocidade de locamento		ra de cação	Tempode perfuração
(Plasma)	(Proteção)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(volts)	(ipm)	(mm/min)	(pol)	(mm)	(mseg)
Nitrogênio	Nitrogêni	25	1,72	17	1,17	17	1,17	17	1,17	135	250	6350	0,1	2,5	0
Argônio	Ar	25	1,72	40	2,76	17	1,17	40	2,76	78	100	2540	0,1	2,5	0

^{*} Use uma altura de transferência de arco (altura de ignição) de 6,4 mm (0,250") para corte e 2,5 mm (0,100") para marcação. ** Início da borda recomendado.

Aço inoxidável - 200 Amperes - Plasma H17/Proteção de nitrogênio

Sistema imperial*

Espessi mate	rial	Qualidad e de corte	Fluxo prévio (psi)	Plasma (psi)	Proteçã o (psi)	Fluxo posterior (psi)	Tensão do arco		Altura de corte	0	Tempo de perfuração	corte	
(po	1)						(volts)	(ipm)	(pol)	(pol)	(mseg)	(pol)	Ш
0,3750	3/8	Р					162	80	0,150	0,325	700	0,131	
0,5000	1/2	Q					163	75		0,350	800	0,132	
0,6250	5/8	Q	20	74	40	74	172	60	0,225	0,400	1000	0,148	
0,7500	3/4	0	28	71	49	71	178	47	0,250	0,475	1300	0,154	
1,0000	1	Q					192	32	0,340		1500	0,178	*
1,2500	1 ¼	S					202	20	0,385	0,425	1700	0,190	*
1,5000	1 ½	S					210	14	0,400		2000	0,210	*


Sistema métrico*

		Fluxo			Eluvo		Velocidade				Largura	П
Espessura do	Qualidade	prévio	Plasma	Proteção	Fluxo posterior	Tensão	de deslo-	Altura	Altura de	Tempo de	de	
material	de corte	(bar)	(bar)	(bar)	(bar)	do arco	camento	de corte	perfuração	perfuração	corte	
(mm)		(bai)			(Dai)	(volts)	(mm/m)	(mm)	(mm)	(mseg)	(mm)	
10	Р					162	2025	3,8	8,4	710	3,3	
12	Q					163	1925		8,7	780		
15	Q					170	1625	5,2	9,8	940	3,6	
20	0	1,93	4,90	3,38	4,90	180	1125	6,7	11,9	1330	4,0	
25	Q					191	825	8,5	10,9	1490	4,5	**
30	Q					199	600	9,5	40.0	1640	4,7	**
35	S					206	425	10,0	10,8	1850	5,1	**
38	S					210	350	10,2		2000	5,3	**

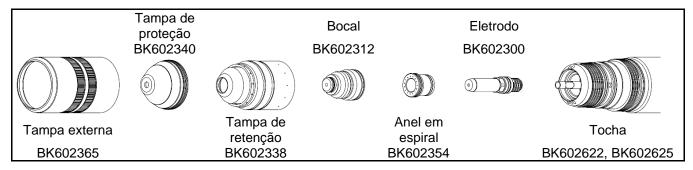
Tipo o	le gás	Fluxo	prévio	Pla	ısma	Prof	teção		uxo terior	Tensão do arco		ocidade de locamento		ra de cação	Tempode perfuração
(Plasma)	(Proteção)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(volts)	(ipm)	(mm/min)	(pol)	(mm)	(mseg)
Nitrogênio	Nitrogêni	28	1,93	17	1,17	17	1,17	17	1,17	125	250	6350	0,1	2,5	0
Argônio	Ar	28	1,93	40	2,76	17	1,17	40	2,76	75	100	2540	0,1	2,5	0

^{*} Use uma altura de transferência de arco (altura de ignição) de 6,4 mm (0,250") para corte e 2,5 mm (0,100") para marcação. ** Início da borda recomendado.

Aço inoxidável - 300 Amperes - Plasma H17/Proteção de nitrogênio

Sistema imperial*

													_
		Qualidad	Fluxo		Proteçã	Fluxo		Velocidad e de		Altura de		Largur	
Espessi		e de	prévio	Plasma (psi)	o	posterior	Tensão	deslo-	Altura	perfuraçã	Tempo de	a de	
mate		corte	(psi)	(10.7)	(psi)	(psi)	do arco		de corte		perfuração		
(po	I)						(volts)	(ipm)	(pol)	(pol)	(mseg)	(pol)	
0,5000	1/2	Р					166	90	0,235	0,325	700	0,175	
0,6250	5/8	0			40		169	70		0,375	900		
0,7500	3/4	Q					175	60	0,290	0,425	1300	0,188	
1,0000	1	Q	26	72		72	189	38	0,390		1600	0,218	
1,2500	1 1/4	Q			32		193	30	0,410	0.500	1500	0,233	*
1,5000	1 ½	Q			2.4		199	22	0.425	0,500	1800	0,235	*
1,7500	1 ¾	S			24		205	17	0,425		2000	0,246	*
2,0000	2	S					208	14				0,250	*


Sistema métrico*

Espessura do material (mm)	Qualidade de corte	previo	Plasma (bar)	Proteção (bar)	naciaria	Tensão do arco (volts)	Velocidade de deslo- camento (mm/m)	de	Altura de perfuração (mm)	Tempo de perfuração (mseg)		
12	Р					165	2400	6,0	8,0	660	4,4	
15	0			2,76		168	1925		9,2	840		
20	Q					177	1450	7,7	11,1	1340	4,9	
25	Q	4 70	4.06		4.06	188	1000	9,7	12,6	1580	5,5	
30	Q	1,79	4,96	2,36	4,96	192	825	10,3		1530	5,8	
35	Q			1,92		196	650	10,6	42.7	1650	5,9	**
40	Q			4.65		201	525	40.0	12,7	1860	6,1	**
45	S			1,65		205	425	10,8		2000	6,3	**
50	S					208	375					**

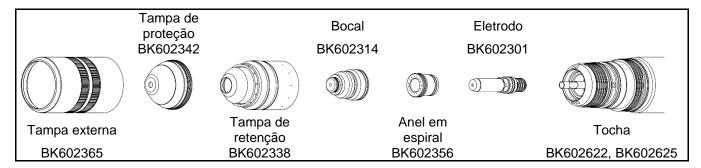
T:				D.		D	~ .		uxo	Tensão do		ocidade de		ra de	Tempode
l libo c	le gás	Fluxo	prévio	Pla	sma	Pro	teção	pos	terior	arco	aes	locamento	marc	cação	perfuração
(Plasma)	(Proteção)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(volts)	(ipm)	(mm/min)	(pol)	(mm)	(mseg)
Nitrogênio	Nitrogêni	26	1,79	15	1,03	15	1,03	15	1,03	108	250	6350	0,1	2,5	0
Argônio	Ar	26	1,79	40	2,76	15	1,03	40	2,76	61	100	2540	0,1	2,5	0

^{*} Use uma altura de transferência de arco (altura de ignição) de 7,6 mm (0,300") para corte e 2,5 mm (0,100") para marcação. ** Início da borda recomendado.

Alumínio - 30 Amperes - Plasma de ar/Proteção de nitrogênio

Sistema imperial*

Espessura do material (pol)	Qualidad e de corte	Fluxo prévio (psi)	Plasma (psi)	Proteçã o (psi)	Fluxo posterior (psi)	Tensão do arco (volts)	Velocidad e de deslo- camento (ipm)	Altura de corte	,	Tempo de perfuração (mseg)	
0,0403 18 Ga	Р	2-		4.0	0.0	130	150	0,030	0,100	100	0,045
0,0508 16 Ga	Р	35	80	18	80	132	120		0,150		0,046
0,0625 1/16	Р					138	90	0,050		200	0,050


Sistema métrico*

Espessura do material (mm)	Qualidade de corte		Plasma (bar)	Proteção (bar)	Fluxo posterior (bar)	Tensão do arco (volts)	Velocidadede deslo-camento (mm/m)	Altura de corte (mm)		Tempo de perfuração (mseg)	
1,0	Р	2.44		4.04		130	3850	0,8	2,5	100	1,1
1,2	Р	2,41	5,52	1,24	5,52	131	3250	-	3,5		1,2
1,5	Р					136	2525	1,1	3,8	170	

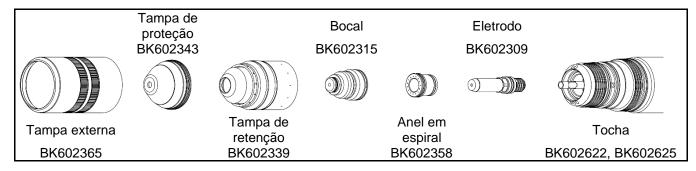
Tipo d	le gás	Fluxo	prévio	Pla	ısma	Prof	teção		ixo erior	Tensão do arco		cidade de ocamento	Altura marca		Tempode perfuração
(Plasma)	(Proteção)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(volts)	(ipm)	(mm/min)	(pol)	(mm)	(mseg)
Nitrogêni	Nitrogêni	25	1,72	25	1,72	25	1,72	25	1,72	147	250	6350	0,175	4,4	0
Argônio	Ar	38	2,62	40	2,76	25	1,72	40	2,76	72	100	2540	0,100	2,5	0

^{*} Use uma altura de transferência de arco (altura de ignição) de 2,5 mm (0,100") para corte e 2,5 mm (0,100") para marcação.

Alumínio - 80 Amperes - Plasma de ar/Proteção de nitrogênio

Sistema imperial*

Espessura do material (pol)	Qualidade de corte	Fluxo prévio (psi)	Plasma (psi)	Proteção (psi)	Fluxo posterior (psi)	Tensão do arco (volts)	Velocidade de deslocamento (ipm)	Altura de corte (pol)	Altura de perfuração (pol)	Tempo de perfuração (mseg)		
0,0808 12	Р					128	250	0,080	0,200	200	0,080	
0,1250 1/8	Р			38			170	0,100		400	,	
0,1875 3/16	Q	25	00		00	133	80		0,225	500	0,075	
0,2500 1/4	Q	25	80		80	141	60	0,120	0,250	600	0,090	
0,3125 5/16	Q			29		143	53	0,130	0.275	800		
0,3750 3/8	Q					145	46	0,140	0,275	900	0,094	
0,5000 1/2	Q			24		153	34	0,160		1200	0,100	**


Sistema métrico*

Olstelli	u mon											
Espessura do material (mm)	Qualidade de corte	Fluxo prévio (bar)	Plasma (bar)	Proteção (bar)	Fluxo posterior (bar)	Tensão do arco (volts)	Velocidade de deslocamento (mm/m)	Altura de corte (mm)		Tempo de perfuração (mseg)		
2	Р					420	6400	2,0	F.4	190		
2,5	Р					128	5525	2,2	5,1	280	2.0	
3	Р			2,62			4625	2,5		370	2,0	
4	Q	4 70				131	3150		5,4	450		
5	Q	1,72	5,52		5,52	134	1950	2,6	5,8	510		
6	Q					139	1625	2,9	6,2	580	2,2	
8	Q			2,00		143	1350	3,3		800	2,3	
10	Q			1,95		146	1125	3,6	7,0	940	2,4	
12	Q			1.73		151	925	4.0		1200	2.5	**

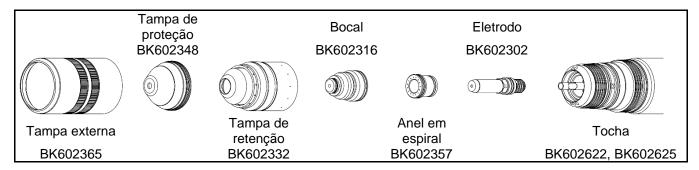
Tipo c	le gás	Fluxo	prévio	Pla	sma	Prof	teção	Flu post	ıxo erior	Tensão do arco		ocidade de locamento		ıra de cação	Tempode perfuração
(Plasma)	(Proteção)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(volts)	(ipm)	(mm/min)	(pol)	(mm)	(mseg)
Nitrogênio	Nitrogêni	25	1,72	23	1,59	23	1,59	23	1,59	131	250	6350	0,1	2,5	0
Argônio	Ar	25	1,72	40	2,76	23	1,59	40	2,76	72	200	5080	0,1	2,5	0

^{*} Use uma altura de transferência de arco (altura de ignição) de 5,1 mm (0,200") para corte e 2,5 mm (0,100") para marcação. ** Início da borda recomendado.

Alumínio - 140 Amperes - Plasma de ar/Proteção de nitrogênio

Sistema imperial*

Espess mate	erial	Qualidade de corte	Fluxo prévio (psi)	Plasma (psi)	Proteçã o (psi)	Fluxo posterior (psi)	Tensão do arco (volts)	Velocidad e de deslo- camento (ipm)		. ,	Tempo de perfuração (mseg)		
0,2500	1/4	Р					156	135	0,170	0,250	600	0,110	
0,3125	5/16	Р					157	110		0,275	700		
0,3750	3/8	Р	40		25	77	161	100	0,185		800	0,116	
0,5000	1/2	0	19	77	35	77	163	75	0,200	0,300	900	0,118	
0,6250	5/8	0					170	62	0,220	0,375	1200	0,120	
0,7500	3/4	Q					178	42	0,240	0,450	1500	0,130	
1,0000	1	Q					187	25	0,275	0,350		0,137	*


Sistema métrico*

Espessura do material (mm)	Qualidade de corte	Fluxo prévio (bar)	Plasma (bar)	Proteção (bar)	Fluxo posterior (bar)	Tensão do arco (volts)	Velocidade dedeslo- camento (mm/m)	corte		Tempo de perfuração (mseg)		
6	Р					156	3575	4,3	6,2	580	2,8	
8	Р					157	2775		7,0	700		
10	Р	4 24	F 24	2.44	Г 24	161	2450	4,8	7,1	810	2.0	
12	0	1,31	5,31	2,41	5,31	163	2050	5,0	7,5	880	3,0	
15	0					168	1675	5,4	9,0	1120		
20	Q					179	1000	6,2	11,0	1500	3,3	
25	Q					186	650	6,9	9,0		3,5	**

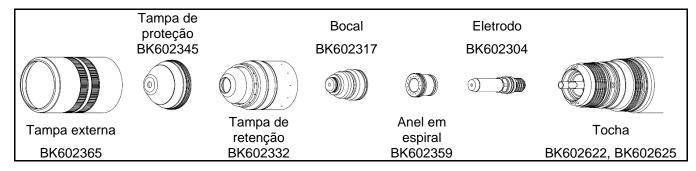
Tipo d	de gás	Fluxo	prévio	Pla	sma	Prof	teção		ixo erior	Tensão do arco		ocidade de locamento		ura de rcação	Tempode perfuração
(Plasma)	(Proteção)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(volts)	(ipm)	(mm/min)	(pol)	(mm)	(mseg)
Nitrogêni	Nitrogênio	19	1,31	19	1,31	19	1,31	19	1,31	153	250	6350	0,1	2,5	0
Argônio	Ar	19	1,31	40	2,76	19	1,31	40	2,76	76	100	2540	0,1	2,5	0

^{*} Use uma altura de transferência de arco (altura de ignição) de 5,1 mm (0,200") para corte e 2,5 mm (0,100") para marcação. ** Início da borda recomendado.

Alumínio - 170 Amperes - Plasma de ar/Proteção de nitrogênio

Sistema imperial*

								Velocidad					
		Qualidad	Fluxo	Plasma	Proteçã	Fluxo		ede		Altura de		Largur	l
Espessi	ura do	e de	prévio	(psi)	0	posterior	Tensão	deslo-	Altura	perfuraçã	Tempo de	a de	l
mate	erial	corte	(psi)	(þ31)	(psi)	(psi)	do arco	camento	de corte	0	perfuração	corte	ı
(po	ol)						(volts)	(ipm)	(pol)	(pol)	(mseg)	(pol)	
0,2500	1/4	Q					161	153	0,170	0,275	400	0,123	L
0,3125	5/16	Q					162	123	0.165	0,325	600	0,112	
0,3750	3/8	0					102	113	0,165	0,350	600	0,114	
0,5000	1/2	0					166	88	0,180	0,375	700	0,120	
0,6250	5/8	0	15	80	42	80	169	76	0,200	0,400	900	0,125	
0,7500	3/4	0					174	54	0,220		1100	0,130	
1,0000	1	Q					188	30	0,225	0,425		0,143	**
1,2500	1 1/4	Q					197	19	0,250	0,423	1500	0,145	**
1,5000	1 ½	S					207	13	0,270			0,155	**


Sistema métrico*

		Fluxo			Fluxo		Velocidade	Altura			Largura	1
Espessura do		nrévio		Proteção	posterior	Tensão	de deslo-	de				
material	de corte	(bar)	(bar)	(bar)	(bar)	do arco	camento	corte	perfuração	perfuração	corte	
(mm)		(bai)			(Dai)	(volts)	(mm/m)	(mm)	(mm)	(mseg)	(mm)	
6	Q					161	4050	4,3	6,7	360	3,2	
8	Q					162	3125	4.2	8,3	600	2,8	
10	0					163	2775	4,2	9,0	610	2,9	
12	0					165	2375	4,5	9,4	680	3,0	
15	0	1,03	5,52	2,90	5,52	168	2025	4,9	10,0	840	3,1	
20	0	1,03	5,52	2,90	5,52	176	1275	5,6		1160	3,4	
25	Q					187	800	5,7			3,6	**
30	Q					195	550	6,2	10,8	1500	3,7	**
35	S					202	400	6,6		1500	3,8	**
38	S					207	325	6,9			3,9	**

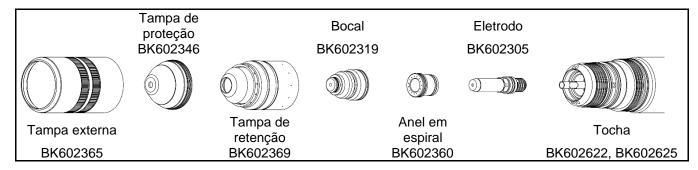
								FI	uxo	Tensão do	Velo	ocidade de	Altu	ra de	Tempode
Tipo c	le gás	Fluxo	prévio	Pla	ısma	Prof	teção	pos	terior	arco	des	locamento	marc	cação	perfuração
(Plasma)	(Proteção)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(volts)	(ipm)	(mm/min)	(pol)	(mm)	(mseg)
Nitrogênio	Nitrogêni	15	1,03	17	1,17	17	1,17	17	1,17	138	250	6350	0,1	2,5	0
Argônio	Ar	15	1,03	40	2,76	17	1,17	40	2,76	79	100	2540	0,1	2,5	0

^{*} Use uma altura de transferência de arco (altura de ignição) de 6,4 mm (0,250") para corte e 2,5 mm (0,100") para marcação. ** Início da borda recomendado.

Alumínio - 200 Amperes - Plasma de ar/Proteção de nitrogênio

Sistema imperial*

		por.ia											
Espessura do material		Qualidade de corte	Fluxo prévio (psi)	Plasma (psi)	Proteçã o (psi)	Fluxo posterior (psi)	Tensão do arco (volts)	Velocidad e de deslo- camento (ipm)	Altura de corte (pol)		Tempo de perfuração (mseg)		
0,2500	1/4	Р					163	170	0.400	0,300	600	0,135	
0,3125	5/16	Р					166	145	0,190	0,325	700	0,136	
0,3750	3/8	Р						125		0,350	800	0,133	
0,5000	1/2	Q	47	04	25	0.4	167	100	0.475	0,375	900	0,129	
0,6250	5/8	Q	17	81	35	81	172	90	0,175	0,400	1000	0,133	
0,7500	3/4	0					173	65			1200	0,135	
1,0000	1	Q					183	35	0,200	0,425	4500	0,148	*
1,2500	1 ¼	Q					195	20	0,225		1500	0,162	*
1,5000	1 ½	S					206	13	0,250			0,176	*


Sistema métrico*

	Olotema metrico													
Espessura do material (mm)	Qualidade de corte	Fluxo prévio (bar)	Plasma (bar)	Proteção (bar)	Fluxo posterior (bar)	Tensão do arco (volts)	Velocidadede deslo-camento (mm/m)	Altura de corte (mm)		Tempo de perfuração (mseg)		ı		
6	Р					162	4450		7,5	580	3,4			
8	Р					166	3675 4,8	4,8	8,3	700	3,5			
10	Р			0.44			3075		9,0	810	3,4			
12	Q	4.47	5 50			167	2675	4,5	9,4	880	3,3			
15	Q	1,17	5,58	2,41	5,58	171	2350	4,4	10,0	970	3,4			
20	0					174	1525	4,5		1240	3,5			
25	Q					182	925	5,0	10,8	4500	3,7	**		
30	Q					192	625	5,5		1500	4,0	**		
35	S					201	425	6,0			4,3	**		

							Flu	IXO	Tensão do	Velo	cidade de	Alt	ura de	Tempode	
Tipo d	Tipo de gás		prévio Plasma		Proteção		posterior		arco	deslocamento		marcação		perfuração	
(Plasma)	(Proteção)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(volts)	(ipm)	(mm/min)	(pol)	(mm)	(mseg)
Nitrogêni	Nitrogêni	17	1,17	17	1,17	17	1,17	17	1,17	134	250	6350	0,1	2,5	0
Argônio	Ar	17	1,17	40	2,76	17	1,17	40	2,76	80	100	2540	0,1	2,5	0

^{*} Use uma altura de transferência de arco (altura de ignição) de 6,4 mm (0,250") para corte e 2,5 mm (0,100") para marcação.** Início da borda recomendado.

Alumínio - 300 Amperes - Plasma de ar/Proteção de nitrogênio

Sistema imperial*

Espessura do material		Qualidade de corte	Fluxo prévio (psi)	Plasma (psi)	Proteçã o (psi)	Fluxo posterior (psi)	Tensão do arco (volts)	Velocidad e de deslo- camento (ipm)			Tempo de perfuração (mseg)	Largur a de corte (pol)		
0,3750	3/8	Р					163	175	0,230	0,425	600	0,173	П	
0,5000	1/2	Р			40		160	135	0,200	0,450	700	0,157		
0,6250	5/8	Р			49	166 115 0,230 0,500			800	0,164				
0,7500	3/4	0	4.4	70			168	93	0,240	0,600	1000	0,165		
1,0000	1	0	14	72		72	177	65	0,280	0,800	1700	0,173		
1,2500	1 ¼	Q					182	50	0,300		1500	0,185	*	
1,5000	1 ½	Q			40		193	27	0,320	0,500		0,194	*	
1,7500	1 ¾	S					207	16	0,340		2000	0,215	*	
2,0000	2	S					220	11	0,360			0,240	*	

Sistema métrico*

Olotoilla i		•										
Espessura do material (mm)	Qualidade de corte	Fluxo prévio (bar)	Plasma (bar)	Proteção (bar)	Fluxo posterior (bar)	Tensão do arco (volts)	Velocidadede deslo-camento (mm/m)	Altura de corte (mm)		Tempo de perfuração (mseg)		
10	Р					163	4300	5,7	10,9	610	4,3	
12	Р			2.22		161	3650	5,2	11,3	680	4,1	
15	Р			3,38	4,96	164	3050	5,6	12,4	770		
20	0					169	2250	6,2	16,0	1100	4,2	
25	0	0,97	4,96			176	1700	7,0	20,0	1660	4,4	
30	Q			2,93		181	1375	7,5	14,8	1560	4,6	
35	Q					188	975	7,9		1500	4,8	**
40	Q			2,76		197	600	8,3	12,7	1650	5,1	**
45	S					208	400	8,7]	2000	5,5	**
50	S					218	300	9,1	1		6,0	**

Marcação* - Para todas as espessuras de material

Tipo de gás		Fluxo prévio Plasma		sma	Proteção		Fluxo posterior		Tensão do arco	Velocidade de deslocamento		Altura de marcação		Tempode perfuração	
(Plasma)	(Proteção)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(psi)	(bar)	(volts)	(ipm)	(mm/min)	(pol)	(mm)	(mseg)
Nitrogêni	Nitrogênio	14	0,97	15	1,03	15	1,03	15	1,03	118	250	6350	0,1	2,5	0
Argônio	Ar	14	0,97	40	2,76	15	1,03	40	2,76	65	100	2540	0,1	2,5	0

^{*} Use uma altura de transferência de arco (altura de ignição) de 7,6 mm (0,300") para corte e 2,5 mm (0,100") para marcação. ** Início da borda recomendado.

Estas informações estão sujeitas aos controles dos Regulamentos de Administração de Exportação [EAR]. Estas informações não devem ser fornecidas a pessoas que não sejam dos EUA ou transferidas por qualquer meio para qualquer local fora dos Estados Unidos, em desacordo com as exigências dos EAR.

EM BRANCO