RapidArc[®] Weld Process Guide

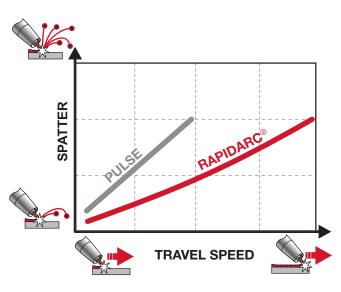
Overview

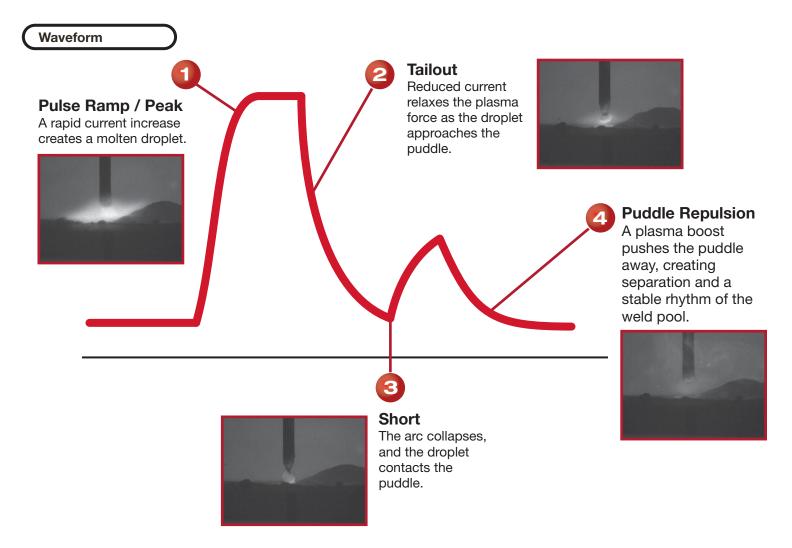
RapidArc[®] Shorter Arc Length - Faster Travel Speeds.

- Increases Travel Speed by over 50%
- Reduces Spatter by 15%
- Reduces Heat Input
- Reduces Distortion

Index	
Details	1
Process Description	
Waveform	
Optimization	2
Waveform Control Technology™	
UltimArc™ Control	
Applications	3-5
1F / PA Lap	
2F / PB Lap	
3F / PG Lap	
Set-up	6-9
Sense Leads	
Work Leads	
Connection Diagram	
Troubleshooting	
Glossary	10
Icons	
Technical Terms	
Procedure Notes	
Customer Assistance Policy	

RapidArc[®] Details

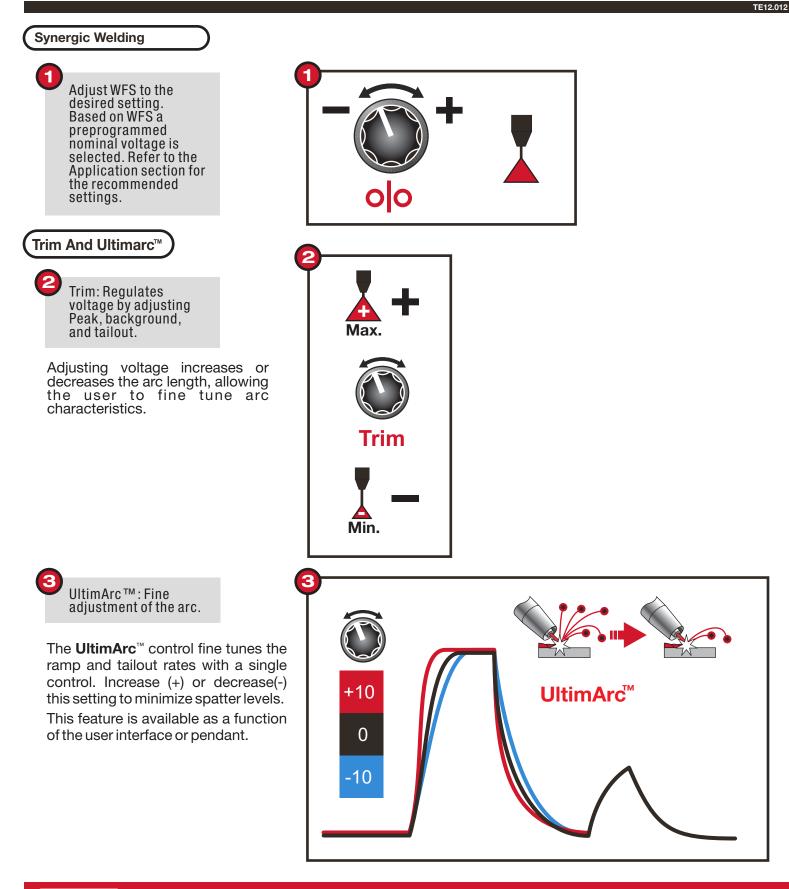



TE12.012

Process Description

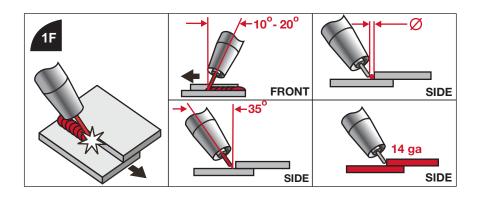
The **RapidArc**[®] process is designed to reduce cycle time in semi-automatic, robotic, and hard automation applications by utilizing increased travel speeds.

Traditional Pulse uses a longer arc length to avoid spatter which also limits travel speed. With **RapidArc**[®], arc length is kept short and tight, and spatter is avoided with precise control of droplet transfer. As the droplet is transferred, it contacts the puddle resulting in a short. The **RapidArc**[®] waveform features a short-circuit response which allows the short to clear with minimal spatter. A plasma boost function creates electrode to puddle separation, and increases stability by establishing rhythm. Ultimarc[™] completes the advanced controls for fine tuning travel speed, spatter, puddle fluidity and penetration. The result is a highly versatile, advanced pulse application.



RapidArc[®] Optimization

 2



The Performance You Need. The Quality You Expect.

RapidArc[®] Mild Steel Applications

1F / PA Lap

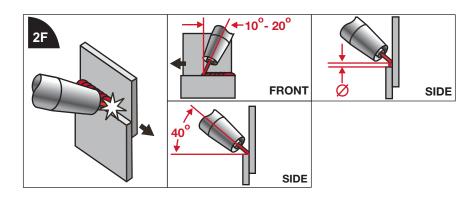
- Use a 10-20° push angle.
- Use a 35° work angle.
- Position the electrode approximately one electrode diameter outside the joint favoring the bottom leg.
- For 14 ga applications position the electrode directly in the joint or slightly favoring the top edge. May require decreased work angle.

90Ar / 10CO₂	+	00		V	Α
SuperArc [®] L-56		in/min	in/min		
0.035"	1/4 in	800	30	24.0	245
	3/16 in	800	45	23.0	245
	10 ga	800	55	23.5	235
	12 ga	750	60	23.8	235
	14 ga	615	60	22.5	210
-	1				
SuperArc [®] L-56	1/4 in	550	40	23.0	280
0.045"	3/16 in	525	45	21.3	275
	10 ga	500	50	21.4	280
	12 ga	450	52	20.0	260
	14 ga	375	55	19.0	210

See Customer Assistance Policy and Disclaimer Notice on page 9.

Metric					
80Ar / 20CO₂	+	00		V	Α
SupraMig [®]	mm	m/min	cm/min		
1.0mm	6.4	19	95	25.0	265
	4.8	18	107	24.5	245
	3.4	16	121	24.0	235
	2.6	15	132	23.5	205
	1.9	13	147	23.3	185
SupraMig [®]	6.4	13	80	25.5	310
1.2mm	4.8	13	107	25.0	295
	3.4	11	133	23.0	270
	2.6	10	147	24.0	255
	1.9		147	24.0	233
	1.9	10	001	23.8	240

See Customer Assistance Policy and Disclaimer Notice on page 9.


RapidArc[®] Mild Steel Applications

2F / PB Lap

٨

.

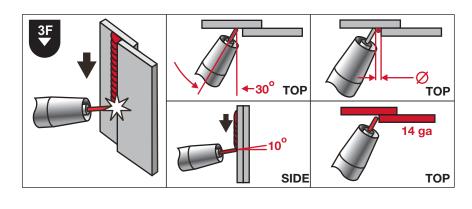
- Use a 10-20° push angle.
- Use a 40° work angle.
- Position the electrode approximately one electrode diameter outside the joint favoring the top leg.

90Ar / 10CO₂	+	00		V	Α
SuperArc [®] L-56		in/min	in/min		
0.035"	1/4 in	800	40	24.0	250
	3/16 in	780	50	23.2	240
	10 ga	740	70	23.0	240
	12 ga	700	75	21.7	235
	14 ga	615	80	20.3	210
				1	1
SuperArc [®] L-56	1/4 in	500	45	21.7	265
0.045"	3/16 in	475	50	21.2	260
	10 ga	450	60	20.0	255
	12 ga	425	65	19.8	240
	14 ga	375	70	18.0	235

See Customer Assistance Policy and Disclaimer Notice on page 9.

Metric					
80Ar / 20CO₂	+	00		V	Α
SupraMig [®] 1.0mm	mm	m/min	cm/min		
1.0mm	6.4	18	95	24.0	250
	4.8	17	104	23.5	240
	3.4	15	131	22.5	230
	2.6	15	145	22.0	220
	1.9	13	152	21.5	165
	6.4	13	80	25.0	290
SupraMig [®] 1.2mm					
U I.2mm	4.8	12	106	23.0	280
	3.4	11	133	21.5	260
	2.6	10	147	20.5	240
	1.9	10	155	20.5	200

See Customer Assistance Policy and Disclaimer Notice on page 9.



RapidArc[®] Mild Steel Applications

3F / PG Lap

٨

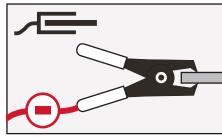
- Use a 10° drag angle.
- Use a 30° work angle.
- Position the electrode approximately one electrode diameter outside the joint favoring the bottom leg.
- For 14 ga applications position the electrode directly in the joint or slightly favoring the edge.

90Ar / 10CO₂	+	00		V	Α
SuperArc [®] L-56 0.035"		in/min	in/min		
0.035"	1/4 in	780	35	24.4	265
	3/16 in	780	50	24.0	245
	10 ga	650	50	23.0	220
	12 ga	650	60	23.0	220
	14 ga	600	70	22.4	200
SuperArc [®] L-56	1/4 in	475	35	22.0	260
0.045"	3/16 in	475	50	23.5	275
	10 ga	400	50	22.0	240
	12 ga	400	62	22.5	245
	14 ga	360	65	20.5	225

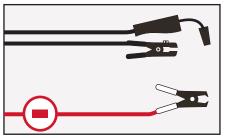
See Customer Assistance Policy and Disclaimer Notice on page 9.

Metric					
80Ar / 20CO₂ 19 mm	+	00		V	Α
SupraMig [®]	mm	m/min	cm/min		
1.0mm	4.8	17	132	24.5	240
	3.4	16	147	24.5	230
	2.6	15	160	23.8	220
	1.9	13	172	23.5	205
SupraMig [®]	4.8	13	133	23.0	280
1.2mm	3.4	11	133	21.5	245
	2.6	11	160	21.5	250
	1.9	10	187	20.5	225

See Customer Assistance Policy and Disclaimer Notice on page 9.



RapidArc[®] Set-Up



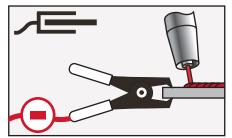
TE12.012

Sense Leads

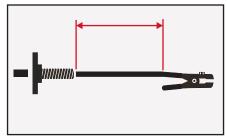
A work (-) sense lead is optional and should be connected directly to the workpiece without being in the path of current flow.



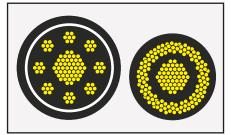
The work (-) sense lead should be separated away from welding cables to minimize interference.


Work Leads

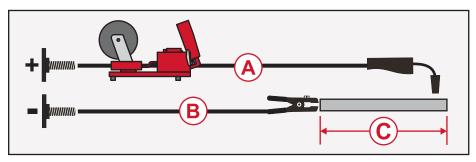
DO NOT connect either sense lead to a welding stud as this may result in erratic arc or increased spatter.



DO NOT route sense lead cable close to high current welding cables as this may distort the sense lead signal.

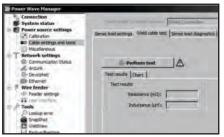


For best performance, connect the work (-) sense lead close to the welding arc.


For non-Lincoln Electric Power Feeders assistance, call the Lincoln Electric Application Engineering Group staffed by experienced engineers, technologists and technicians in Cleveland, Ohio, USA at (866) 635-4709.

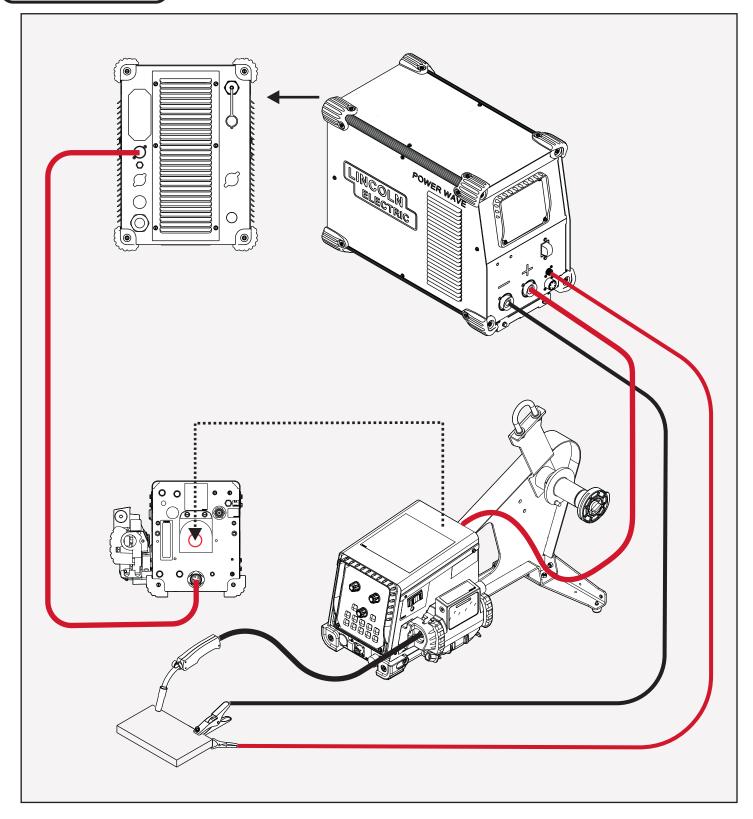
Connect the work lead to the negative stud on the power source and directly to the work piece. Maintain the shortest connection length possible.

For configurations with excessive inductance, use Lincoln Electric[®] patented coaxial welding cables.



The total length of the welding current loop (A+B+C) should be minimized to reduce inductance.

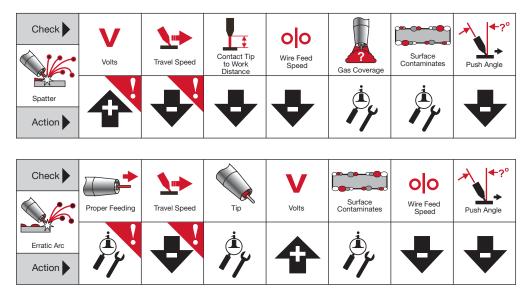
Lincoln Electric[®] coaxial cables combine the positive and negative welding leads into one cable to minimize cable inductance.

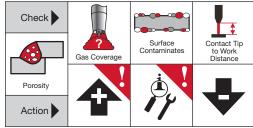

Route cables (A,B) close together to further reduce cable inductance.

Test cable inductance levels using the Power Wave[®] Manager software exclusively from Lincoln Electric[®].

RapidArc[®] Set-Up

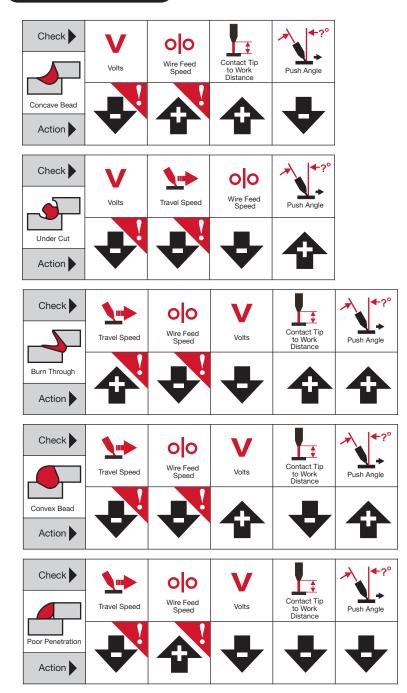
Connection Diagram





RapidArc[®] Troubleshooting

Troubleshooting



8

TE12.012

RapidArc[®] Troubleshooting

Troubleshooting

TE12.012

RapidArc[®] Glossary

TE12.012

Icons olo Ø Α Contact Tip Wire Feed Materia Volts Amps to Work Wire Type Travel Speed Gas Arc Length Stop / Avoid Thickness Speed Control Knob Distance Negative Positive Travel Speed Travel Speed Weld Stud Torch Work Clamp **Torch Nozzle** Spatter (Minimal Spatter Sense Lead Sense Lead (Fast) (Slow)

Technical Terms

Cable Inductance Resistance to change in current.

_____ Gas metal arc welding including metal inert gas (MIG) and metal active gas (MAG) welding. GMAW

Porosity_____Gas entrapped in solidifying metal forms spherical or elongated pores in the weld.

Push Angle_____ The angle at which the electrode leads the weld pool relative to the direction of travel.

- Synergic ______ A mode of control which automatically selects a preprogrammed nominal voltage based on the wire feed speed (WFS) set by the operator.
- **Work Angle**_____ The angle of the electrode, off perpendicular, relative to the work piece surface.

Procedure Notes

All listed procedures are starting points and may The result of welding at higher travel speeds is a At faster travel speeds, the bead-shape can application.

factors that may require special consideration required. depending on the specific application.

At higher travel speeds, joint fit up, wire placement, and contamination all become factors that are more significant.

Customer Assistance Policy

require some adjustment depending on the specific tendency to produce more spatter, less penetration, more undercut, and a less desirable bead shape. Depending on the limitations / Torch angle, electrode placement, contamination, requirements of the actual application, slower stubbing will occur. This forms a limitation of just mill scale, joint fit up, and joint consistency are travel speeds and higher arc voltages may be how fast the travel speed can be raised.

> As the travel speed increases in fast follow applications (1/4" to 14 Gauge), a tighter and arc length must be maintained so that the puddle properly follows the arc. Operators typically reduce the arc length control (Trim) to achieve this.

become very convex (or ropy), and the weld will not "wet" well. There is a point at which the arc is set so short that the arc will become unstable and

It is ultimately the responsibility of the end user to ensure the proper weld deposition rate, bead profile, and structural integrity of a given weld application.

The business of The Lincoln Electric Company is manufacturing and selling high guality welding equipment, consumables, and cutting equipment. Our challenge is to meet the needs of our customer and to exceed their expectations. On occasion, purchasers may ask Lincoln Electric for advice or information about their use of our products. We respond to our customers based on the best information in our possession at that time. Lincoln Electric is not in a position to warrant or guarantee such advice, and assumes no liability, with respect to such information or advice. We expressly disclaim any warranty of any kind, including any warranty of fitness for any customer's particular purpose, with respect to such information or advice. As a matter of practical consideration, we also cannot assume any responsibility for updating or correcting any such information or advice once it has been given, nor does the provision of information or advice create, expand or alter any warranty with respect to the sale of our products.

Lincoln Electric is a responsive manufacturer, but the selection and use of specific products sold by Lincoln Electric is solely within the control of, and remains the sole responsibility of the customer. Many variables beyond the control of Lincoln Electric affect the results obtained in applying these types of fabrication methods and service requirement. Subject to change.

This information is accurate to the best of our knowledge at the time of printing. Please refer to www.lincolnelectric.com for any updated information.

