PROCESS GUIDE

STT[®] Braze - MIG Brazing Process

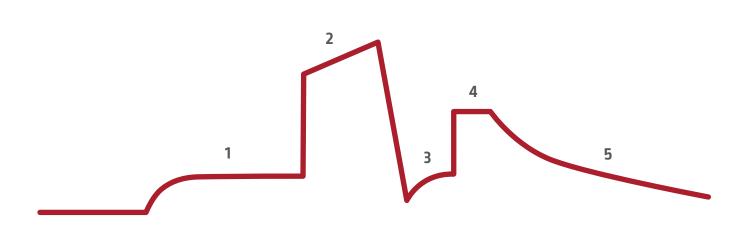
Overview

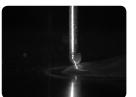
STT[®] Braze - High performance, low spatter brazing

- Reduced Spatter
- Improved Travel Speeds
- Robust, Cost-Effective Brazing Solution

Index

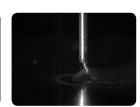
Details1 Process Description Waveform
Optimization2 Synergic Controls Voltage and UltimArc [°]
Applications
Set-up5-8 Sense Leads Work Leads Connection Diagram Troubleshooting
Glossary9 Icons Technical Terms Procedure Notes Customer Assistance Policy

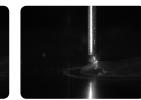



Process Description

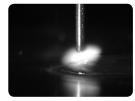
The STT® Braze process was designed for thin sheet metal applications requiring Silicon Bronze filler material. Utilizing the low-spatter technology of our patented STT® waveform, STT® Braze is specifically tuned for SiBR brazing applications,

altering the waveform shape to match the characteristics of copper based electrodes for brazing. The result is a stable, low spatter process that provides consistent results.

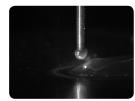

Waveform


1. Wet-in

Molten ball makes initial contact with braze pool and current is held constant.



2. Pinch Current


As the wire necks down, special circuitry determines that the short is about to break.

3. Detachment The STT Switch quickly reduces the current at the instant the droplet detaches, reducing spatter

4. Peak Current Peak Current sets a pre-defined arc length.

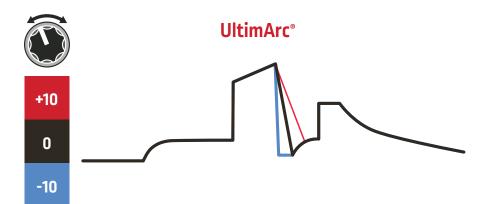
5. Tailout & Background Background regulation maintains a consistent molten ball size.

Synergic Welding

 Adjust WFS to the desired setting. Refer to the Applications section for the recommended settings.

Voltage and UltimArc[®]

- 2. Based on WFS, a pre-programmed nominal voltage is selected.
- 3. Adjusting voltage increases or decreases the arc length, allowing the user to fine tune arc characteristics.
- 4. Synergic Weld modes improve the ease of set-up by pre-selecting an ideal voltage based on the selected WFS. The user can then fine tune their Voltage setting based on their personal preference and can easily see whether they are above or below the nominal setting.
- **5.** The UltimArc[®] control fine-tunes the heat input into the plate.

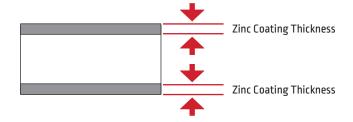

Voltage Display

Above Ideal Voltage (Upper bar displayed)

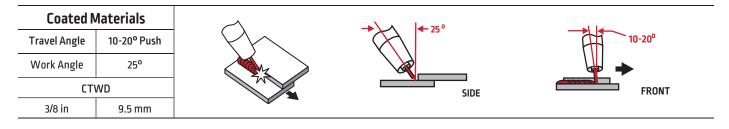
At Ideal Voltage (No bar displayed)

Below Ideal Voltage (Lower bar displayed)

ASTM Designations for Hot-Dipped Galvanized Plate


ENGLISH:

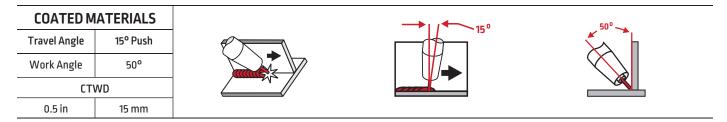
60G60G designates the minimum coating weight per ASTM specification.


METRIC:

Z120 designates the minimum coating weight per ASTM specification.

Typical Zinc Coating Thickness for these ASTM specifications average 9.1 microns.

Lap Weld Procedures


100% Ar

	+	00		Т	
	Material Thickness	Wire Feed Speed	Travel Speed	Trim	UltimArc®
SuperGlaze® SiBR	mm	in/min	in/min		
🖤 0.035 in	0.8	375	40	0.95	0
60G60G	1.0	425	40	0.95	0
	1.2	450	40	0.95	0

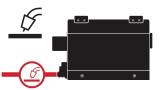
	—	olo			
	Material Thickness	Wire Feed Speed	Travel Speed	Trim	UltimArc*
SuperGlaze® SiBR	mm	in/min	in/min		
0.040 in	0.8	310	40	0.95	0
60G60G	1.0	325	40	0.95	0
	1.2	350	40	0.95	0

	+	၀၀		Т	
	Material Thickness	Wire Feed Speed	Travel Speed	Trim	UltimArc®
SuperGlaze® SiBR 0.045 in	mm	in/min	in/min		
0.045 in	0.8	225	40	0.95	0
60G60G	1.0	250	40	0.95	0
	1.2	275	40	0.95	0

Fillet Weld Procedures

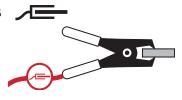
100% Ar

	+	00		Т	
	Material Thickness	Wire Feed Speed	Travel Speed	Trim	UltimArc®
🚯 SuperGlaze® SiBR	mm	in/min	in/min		
🖤 0.035 in	0.8	415	40	1	-5
60G60G	1.0	450	35	0.95	-5
	1.2	450	30	0.95	-5

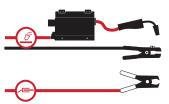

		olo			
	Material Thickness	Wire Feed Speed	Travel Speed	Trim	UltimArc*
SuperGlaze® SiBR	mm	in/min	in/min		
🖤 0.040 in	0.8	325	40	1	-10
60G60G	1.0	350	35	0.95	-5
	1.2	350	30	0.95	-5

	+	00		Т	
	Material Thickness	Wire Feed Speed	Travel Speed	Trim	UltimArc®
SuperGlaze® SiBR 0.045 in	mm	in/min	in/min		
🖤 0.045 in	0.8	250	40	1	-10
60G60G	1.0	275	35	0.95	-5
	1.2	275	30	0.95	-5

Sense Leads


An electrode sense lead is required. This is a standard connection in an ArcLink[®] cable.

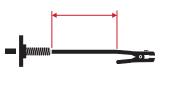

DO <u>NOT</u> connect either sense lead to a welding stud on the power source as this may result in erratic arc behavior.


A work sense lead (optional) is highly recommended for total welding cable lengths >50 ft. and should be connected directly to the workpiece.

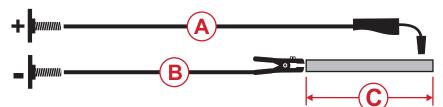
For best performance, connect the work sense lead close to the welding arc.

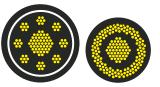
The work sense lead should be separated away from welding cables to minimize interference.

DO <u>NOT</u> route sense lead cable close to high current welding cables as this may distort the sense lead signal.



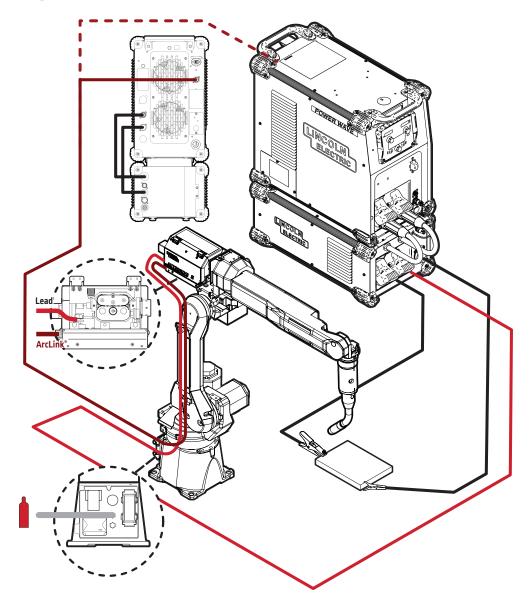
Work Leads


Connect the work lead to the negative stud on the power source and directly to the work piece. Maintain the shortest connection length possible.


The total length of the welding current loop (A+B+C) should be minimized to reduce inductance. Route cables (A,B) close together to further reduce cable inductance.

For configurations with excessive inductance, use Lincoln Electric[®] patented coaxial welding cables.

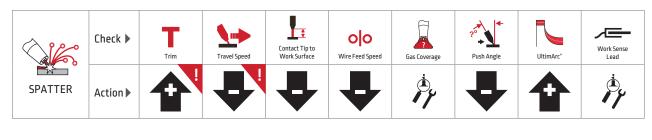
Test cable inductance levels using the Power Wave® Manager software exclusively from Lincoln Electric® Software. Available at www.powerwavesoftware.com.



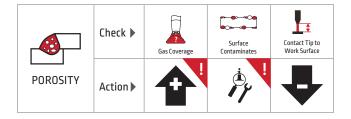
Lincoln Electric coaxial cables combine the positive and negative welding leads into one cable to minimize cable inductance.

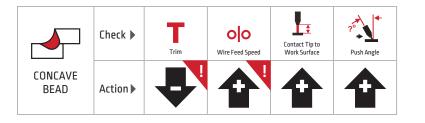
Connection Diagram

Recommended MIG Torch Components


AutoDrive[®] 4R220

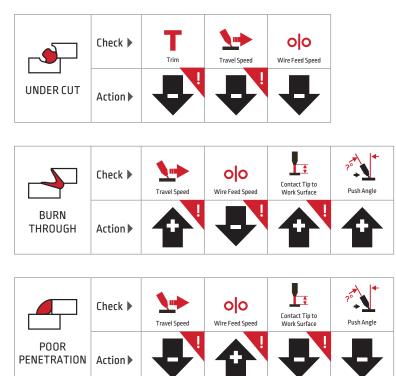
Description	Product Number
Magnum [®] PRO 350A Diffuser	KP2746-1
Magnum PRO 350A Tapered Tip 0.035"	KP2744-035T
Magnum PRO 350A Tapered Tip 3/64" 5356	KP2744-364AT5356
Drive Roll & Wire Guide Kit - Aluminum Wire 0.035"	KP1507-035A
Drive Roll & Wire Guide Kit - Aluminum Wire 0.045"	KP1507-3/64A
Magnum PRO 350A Standard 0.375" Recess Nozzle	KP2742-1-38R
Magnum PRO 350A Gun Tube Insulator	KP2773-2
Connector (Thru Arm) Small Liner Size	K466-12


AutoDrive[°] S


Description	Product Number
Magnum PRO 350A Diffuser	KP2746-1
Magnum PRO 350A Tapered Tip 0.035"	KP2744-035T
Magnum PRO 350A Tapered Tip 3/64" 5356	KP2744-364AT5356
Magnum PRO 350A Standard 0.375" Recess Nozzle	KP2742-1-38R
Magnum PRO 350A Gun Tube Insulator	KP2773-2

Troubleshooting

	Check 🕨	Travel Speed	Proper Feeding	Trim	OO Wire Feed Speed	Push Angle	Tip	Surface Contaminates	Work Sense Lead
ERRATIC ARC	Action				₽	₽	Å.	Å.	j.



	Check 🕨	Travel Speed	OO Wire Feed Speed	Trim	Contact Tip to Work Surface	Push Angle
CONVEX BEAD	Action				₽	

Troubleshooting

Icons

Wire Type	Gas	Material Thickness	O Wire Feed Speed	Travel Speed	Trim	A Amps	Contact Tip to Work Surface	Push Angle	ArcLength
Control Knob	Weld Stud	Torch	Work Sense Lead	Work Clamp	Torch Nozzle	Spatter	Erratic Arc	Proper Feeding	Stop / Avoid
Gas Coverage	Porosity	Concave Bead	Burn Through	Under Cut	Convex Bead	Poor Penetration	UltimArc*	Surface Contaminates	

Technical Terms

Cable Inductance	Resistance to change in current. Should not exceed 65 µH.
GMAW	Gas metal arc welding including metal inert gas (MIG) and metal active gas (MAG) welding.
Porosity	Gas entrapped in solidifying metal forms spherical or elongated pores in the weld.
Push Angle	The angle at which the electrode leads the weld pool relative to the direction of travel.
Synergic	A mode of control which automatically selects a preprogrammed nominal voltage based on the wire feed speed (WFS) set by the operator.
Work Angle	The angle of the electrode, off perpendicular, relative to the work piece surface.

Procedure Notes

All listed procedures are starting points and may require some adjustment depending on the specific application.

Torch angle, electrode placement, contamination, mill scale, joint fit up, and joint consistency are factors that may require special consideration depending on the specific application.

At higher travel speeds, joint fit up, wire placement, and contamination all become factors that are more significant.

The result of welding at higher travel speeds is a tendency to produce more spatter, less penetration, more undercut, and a less desirable bead shape. Depending on the limitations / requirements of the actual application, slower travel speeds and higher arc voltages may be required.

As the travel speed increases in fast follow applications (1/4" to 14 Gauge), a tighter arc length must be maintained so that the puddle properly follows the arc. Operators typically reduce the arc length control (Voltage) to achieve this. At faster travel speeds, the bead-shape can become very convex (or ropy), and the weld will not "wet" well. There is a point at which the arc is set so short that the arc will become unstable and stubbing will occur. This forms a limitation of just how fast the travel speed can be raised.

It is ultimately the responsibility of the end user to ensure the proper weld deposition rate, bead profile, and structural integrity of a given weld application.

CUSTOMER ASSISTANCE POLICY

The business of The Lincoln Electric Company^{*} is manufacturing and selling high quality welding equipment, consumables, and cutting equipment. Our challenge is to meet the needs of our customers and to exceed their expectations. On occasion, purchasers may ask Lincoln Electric for information or advice about their use of our products. Our employees respond to inquiries to the best of their ability based on information provided to them by the customers and the knowledge they may have concerning the application. Our employees, however, are not in a position to verify the information provided or to evaluate the engineering requirements for the particular weldment. Accordingly, Lincoln Electric does not warrant or guarantee or assume any liability with respect to such information or advice. Moreover, the provision of such information or advice does not create, expand, or alter any warranty on our products. Any express or implied warranty that might arise from the information or advice, including any implied warranty of merchantability or any warranty of fitness for any customers' particular purpose is specifically disclaimed.

Lincoln Electric is a responsive manufacturer, but the selection and use of specific products sold by Lincoln Electric is solely within the control of, and remains the sole responsibility of the customer. Many variables beyond the control of Lincoln Electric affect the results obtained in applying these types of fabrication methods and service requirements.

Subject to Change - This information is accurate to the best of our knowledge at the time of printing. Please refer to www.lincolnelectric.com for any updated information.