LINCORE® 57-G PRODUCT OVERVIEW | | Lincore®
50 | Lincore®
55 | Lincore®
55-G | Lincore®
57-G | Lincore®
60-0 | Lincore®
60-G | Lincore®
70-G | Lincoln®
SHS® 9500 | Lincoln®
SHS® 9700 | Lincoln®
SHS® 9800 | Lincoln®
SHS® 9192 | |----------|--|---|---|---|---|--|---|--|--|--|--| | Abrasion | Delivers an abrasion
resistant deposit, even under
conditions of moderate
impact | Delivers a
deposit which
resists metal-
to-metal rolling
or sliding wear
as well as mild
abrasion | Produces a
deposit which
resists metal-to-
metal wear and
mild abrasion | Produces a
deposit which
resists metal-to-
metal wear and
high abrasion | Deposits
feature higher
alloy levels
than to resist
both abrasion
and moderate
impact | Deposits feature
higher alloy
levels than
to resist both
abrasion and
moderate impact | Exceptional wear resistance with deposits that last approximately 2-3 times longer than most chrome carbide and complex carbide alloys, especially in wet abrasion applications | High resistance to abrasion and galling | Provides exceptional
wear resistance
lasting significantly
longer than most
chrome carbide and
complex carbide alloys | Exceptional
resistance to
severe sliding
abrasion | Extreme
resistance to
abrasion | | Base | Can be used on low carbon,
medium carbon, low alloy,
manganese and stainless
steels | To be used on
carbon steel, low
alloy steel and
manganese steel | To be used on carbon steel and low alloy steel | To be used on
carbon, low alloy,
manganese and
stainless steels
and cast iron | To be used
on carbon,
low alloy,
manganese,
stainless steels
and cast iron | To be used on
carbon, low alloy,
manganese and
stainless steels
and cast iron | Can be used on carbon and
low alloy steel parts | Can be used on carbon and low alloy steel parts | Maintains high
hardness after
exposure to elevated
temperature | Can be used
on carbon and
low alloy steel
parts | Can be used
on carbon and
low alloy steel
parts | | Layer | Deposit is limited to four layers | Unlimited
layers with
proper preheat
and interpass
temperatures
and procedures | Unlimited
layers with
proper preheat
and interpass
temperatures
and procedures | Unlimited
layers with
proper preheat
and interpass
temperatures and
procedure | Deposit is
limited to two
layers | Deposit is limited
to two layers | Deposit is limited to two layers | Deposit is limited to two layers | Deposit is limited to
two layers | Deposit is
limited to
two layers | Deposit is
limited to
two layers | | Cracking | | | May have check cracking | May have check cracking | | Less susceptible to check cracking | | Minimal stress relief cracking when applied to plain carbon and low alloy steels | Stress relief cracks
typical | Stress relief
cracks typical | Stress relief cracks typical | | Splatter | | | Medium
Splatter, & slag | Medium splatter | | Low Splatter | | | | | | | Bead | | | Nice weld bead | Nice weld bead | | Clean weld bead | | SHS9500U features a unique uniform glass-forming melt chemistry that allows high undercooling to be achieved during welding. This results in considerable refinement of the crystalline microstructure down to a near nanoscale (400 nm length scale) range. | | | | | Cost | Larger wire diameter
sizes may be used for the
submerged arc process | | | | Can be used at
temperatures
up to 704°C
(1300°F) | Can be used at
temperatures
up to 704°C
(1300°F) creating
a higher impact
resistance | | Lower cost while maintaining near nanoscale (submicron) microstructure | Lower cost while
maintaining near
nanoscale (submicron)
microstructure | Provides longer
lasting wear
life than most
chrome carbide
and complex
carbide alloys | | | Other | The .045" & 1/16" (1.1 & 1.6mm) diameters are especially suitable for overlaying thin gauge materials, building up edges, horizontal stringer beads on sloped surfaces, or where minimum heat input is required. | | The deposit
results in an
even harder
material when
used with the
Bulk Tungsten
Carbide process | The deposit
results in an even
harder material
when used with
the Bulk Tungsten
Carbide process.
It's Martensitic | | Higher Alloy
levels | Great for high value
applications where
downtime is costly or
replacement parts are
expensive | Fe-CrNb-BC (15% alloy) | Fe-CrNb-BC
(24% alloy) | Fe-CrNbMo-BC
(32% alloy) | Fe-
CrNbMoMnW-
SiBC
(43% alloy) |