MÁQUINA DE CORTE

TORCHMATETM 1020w-1530w

INSTRUCCIONES DE SEGURIDAD DE EMPLEO Y DE MANTENIMIENTO

MÁQUINA Nº

AS-CM-TMT1020WF125; AS-CM-TMT1530WF125 AS-CM-TMT1020WTH80; AS-CM-TMT1530WTH80

EDICIÓN : ES REVISIÓN : A

FECHA : 02 - 2025

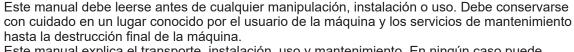
Manual de instrucciones REF : 8695 4794

Manual original

El fabricante le agradece su confianza al comprar este equipo que le dará plena satisfacción si respeta sus instrucciones de uso y mantenimiento.	
Su diseño, la especificación de los componentes y su fabricación son conformes con las directivas europeas aplicables.	
Le recomendamos que consulte la declaración CE adjunta para conocer las directivas a las que está sometido.	
El fabricante declina toda responsabilidad en caso de que se asocien a este producto elementos no recomendados por él.	
Para su seguridad, le indicamos a continuación una lista no exhaustiva de recomendaciones u obligaciones la mayoría de las cuales aparecen en el código de trabajo.	
Le pedimos que informe a su proveedor de cualquier error que se haya podido colar en la redacción de este manual de instrucciones.	

Índice de materias

Presentación del TORCHMATE™ 1020w-1530w	1
Soporte técnico/mantenimiento in situ	2
Desembalaje de la TORCHMATE™ 1020w-1530w	3
Colocación de la TORCHMATE™ 1020w - 1530w	4
Prioridad para la seguridad	5
Instrucciones generales de seguridad:	5
Ruido aéreo:	5
Instrucciones particulares de seguridad:	5
Seguridad del láser:	7
Humos/gases:	
Medición del ruido:	
Preparación del suelo	9
Dimensiones y peso TORCHMATE™ 1020w	
Características generales TORCHMATE™ 1020w	
Dimensiones y peso TORCHMATE™ 1530w	
Características generales TORCHMATE™ 1530w	
Opciones	
Puesta a tierra de la máquina	
Requisitos en materia de electricidad, aire, agua e instalación	
Procedimiento plasma 125A: FLEXCUT™ 125 CE + antorcha LC125M	
Controles y parámetros de la FLEXCUT™ 125 CE plasma	
Características principales del generador FLEXCUT™ 125 CE plasma	
Características principales de la antorcha LC125M	
Rendimiento de la instalación FLEXCUT™ 125 CE + antorcha LC125M	
Uso de los consumibles de la antorcha LC125M - FLEXCUT™ 125 CE	
Procedimiento plasma 80A: TOMAHAWK® 1538 + antorcha LC100M	
Controles y parámetros de la TOMAHAWK® 1538 plasma	17
Características principales del generador TOMAHAWK® 1538 plasma	17
Rendimiento de la instalación TOMAHAWK® 1538 + antorcha LC100M	
Procedimiento plasma 100A manual: TOMAHAWK® 1538 + antorcha LC105	
Puesta en marcha de la TORCHMATE™ 1020w - 1530w	
Parada de la TORCHMATE™ 1020w-1530w	
Vista preliminar de Visual Machine Designer «VMD»	
Job Group:	
View Screen:	
Datum/Program Zero Group:	
Jogging:	
AVHC y Dashboard:	
Selección de opciones:	30
Uso de la biblioteca de formas en VMD	
Calidad del corte	
Desarrolle su propio cuadro de cortes	
Anidación	
Realización del primer corte de prueba	40


Mantenimiento	41
Mantenimiento diario	41
Mantenimiento mensual:	42
Mantenimiento ad hoc:	43
Base del biselado	45
Cómo afecta la posición de la antorcha al bisel	46
Qué provoca los cortes deficientes	47
Opción marcador: Instalación y configuración del marcador	48
Reparación básica de averías	53
Piezas de repuesto	61
Política de asistencia al cliente	64
NOTAS PERSONALES	66

INFORMACIÓN

Esta documentación técnica está destinada para las máquinas/productos siguientes:

- TORCHMATE™ 1020w «FLEXCUT 125»
 AS-CM-TMT1020WF125
- TORCHMATE™ 1020w «TOMAHAWK 80»
 AS-CM-TMT1020WTH80
- TORCHMATE™ 1530w «FLEXCUT 125» AS-CM-TMT1530WF125
- TORCHMATE™ 1530w «TOMAHAWK 80» AS-CM-TMT1530WTH80

Uso del material:

Este manual explica el transporte, instalación, uso y mantenimiento. En ningún caso puede sustituir a la experiencia del usuario para operaciones más o menos difíciles.

Antes de cualquier empleo del filtro por un nuevo usuario, asegúrese de que haya leído este manual, incluidas todas las explicaciones descritas en el interior.

Para cualquier explicación complementaria, no dude en ponerse en contacto con el servicio técnico de **LINCOLN ELECTRIC**.

Garantía del aparato:

Este aparato tiene una garantía de 12 meses desde la fecha de compra.

Durante los 12 primeros meses de uso, la sustitución de las partes defectuosas será gratuita a condición de que las averías no sean consecuencia de un uso inadecuado del aparato. La garantía del aparato deja de tener efecto de inmediato cuando el aparato ya no es propiedad del comprador original.

Los términos de validez de la garantía se someten a verificación y aceptación de nuestro servicio comercial.

Todo uso no conforme que pueda provocar deterioros del aparato queda excluido de la garantía. Para cualquier uso de la garantía, el material debe ser comprobado por nuestro servicio técnico.

Asistencia:

LINCOLN ELECTRIC está a su disposición para cualquier intervención en su material. Póngase en contacto con el servicio técnico para cualquier solicitud.

HOT LINE (+33) 825 132 132

Indicador y manómetro:

Los aparatos de medición o indicadores de tensión, intensidad, velocidad, presión... ya sean analógicos o digitales, deben considerarse como indicadores.

A pesar de todas las medidas adoptadas, es posible que sigan existiendo riesgos residuales que no son evidentes.

Los riesgos residuales pueden reducirse si se respetan las instrucciones de seguridad, el uso previsto y las instrucciones de uso en general.

Estas instrucciones y el producto al que se refieren hacen referencia a las normas vigentes aplicables.

Lea atentamente estas instrucciones antes de instalar, poner en funcionamiento o efectuar el mantenimiento del aparato. Guarde estas instrucciones en un lugar seguro para futuras consultas. Estas instrucciones deben seguir al aparato o máquina descrita en caso de cambio de propietario y acompañarlo hasta su desmontaje.

REVISIÓN

REVISIÓN : A FECHA : 02/25

DESIGNACIÓN	PÁGINA
Creación	

SIGNIFICADO DE LOS SÍMBOLOS

Para facilitar la comprensión de este manual, hemos utilizado diferentes ilustraciones cuyo significado se encuentra a continuación:

	Obligación de leer el manual de instrucciones.	<u></u> ♠	Señal de peligro.
	Obligación de llevar calzado de seguridad.	4	Advertencia de un riesgo o peligro debido a la electricidad.
	Obligación de llevar protección auditiva.	<u>F</u>	Advertencia de un riesgo o peligro debido a un obstáculo en el suelo.
	Obligación de llevar casco de protección.		Advertencia de riesgo o peligro de caída desde una altura.
	Obligación de llevar guantes de protección.		Advertencia de un riesgo o peligro debido a las cargas suspendidas.
	Obligación de utilizar gafas de protección.		Advertencia de un riesgo o peligro debido a la presencia de una superficie caliente.
	Obligación de llevar una visera de protección.		Advertencia de un riesgo o peligro debido a piezas mecánicas en movimiento.
1	Obligación de llevar ropa de protección.		Advertencia de un riesgo o peligro debido a un movimiento de cierre de las partes mecánicas del equipo.
	Obligación de limpiar la zona de trabajo.	**	Advertencia de un riesgo o peligro debido a la presencia de radiación láser.
	Obligación de llevar una protección de las vías respiratorias.		Advertencia de un riesgo o peligro debido a un obstáculo situado en altura.
4	Requiere una inspección visual.		Advertencia de un riesgo o peligro debido a la presencia de un elemento punzante.
	Indica una operación de engrasado.		Las personas con marcapasos no pueden acceder a la zona designada.
X	Requiere una acción de mantenimiento.		

Presentación del TORCHMATE™ 1020w-1530w

La solución **TORCHMATE™** 1020w-1530w es una máquina de corte con plasma rápida de implementar, de uso sencillo y cuya inversión se amortiza rápidamente.

El bastidor de la máquina está formado por una mesa de acero con pletinas de trabajo que sostiene las chapas a cortar y contiene el agua mezclada con «Plateguard red», un líquido específico.

El agua permite recoger el polvo liberado durante el corte.

Los gases residuales de escape permanecen por debajo de los valores límite de exposición en determinadas condiciones de uso:

- 1. Instalar la máquina en un área de producción con dimensiones suficientes y renovación del aire.
- 2. Limitar el uso a 2 horas de corte efectivas al día (tiempo medio de corte comprobado).

Una pantalla táctil y una interfaz hombre-máquina intuitiva con una biblioteca de formas integradas le permitirá cortar de inmediato.

Se suministra un paquete de programas para trabajar con los programas cargados a través de una memoria USB.

La máquina es sencilla de usar y mantener, y cuenta con una garantía de 2 años.

Gracias a la tecnología **FLEXCUT 125 CE** o **TOMAHAWK® 1538**, la máquina ofrece una excelente calidad de corte con aire comprimido sobre acero al carbono y acero inoxidable, además de una gran rentabilidad, una larga vida útil, reducción de las operaciones de acabado, menos rebabas y una mejor calidad angular.

Las principales aplicaciones del equipo se encuentran en los siguientes campos:

- · metalistería,
- · cerrajería,
- · arte y ocio,
- · elaboración de prototipos,
- · formación.
- · talleres de reparación.

Soporte técnico/mantenimiento in situ

LINCOLN ELECTRIC® proporciona diversos tipos de soporte técnico tras la adquisición de su equipo de corte **TORCHMATE™ 1020w-1530w**. A continuación encontrará una breve descripción de las opciones disponibles. Las visitas a las instalaciones tienen un coste adicional; llame al 0825 132 132 para obtener más información.

Asistencia telefónica

La asistencia telefónica está disponible de lunes a viernes, de 8:00 a 17:00. **LINCOLN ELECTRIC®** hará todo lo que esté en sus manos por atender las llamadas telefónicas en el menor plazo posible. Debido a la naturaleza del diagnóstico de la máquina y a las distintas capacidades de los operarios, no podemos garantizar un plazo mínimo de espera telefónica para el soporte técnico. El soporte técnico incluye el montaje, la reparación de fallos, la configuración y las cuestiones relativas a la calidad. La formación operativa no está incluida en el soporte técnico telefónico.

Correo electrónico

LINCOLN ELECTRIC® responderá a los correos electrónicos enviados a la dirección euautomationservices@lincolnelectric.com las 24 horas del día, de lunes a viernes.

• Formación TORCHMATE™ 1020w-1530w

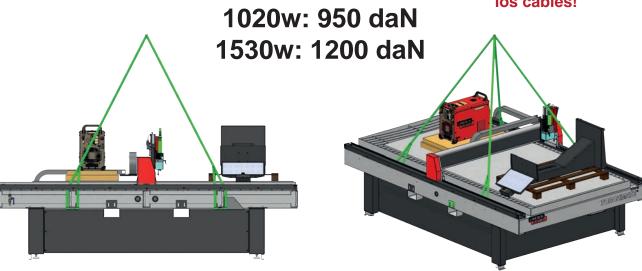
LINCOLN ELECTRIC® ofrece diversas posibilidades de formación en las instalaciones del cliente o en nuestro Centro de Excelencia de Pont-Sainte-Maxence. Llame al 0825 132 132 para obtener información detallada.

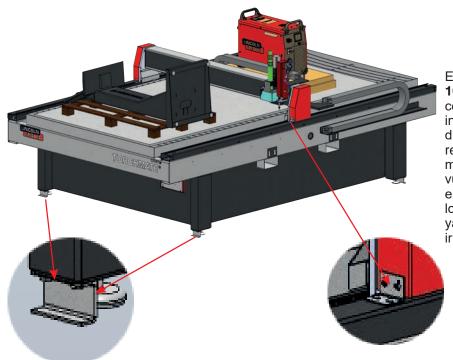
Desembalaje de la TORCHMATE™ 1020w-1530w

La máquina **TORCHMATE™ 1020w-1530w** se suministra montada, pero deberá retirar el material de envío y los cierres de seguridad antes de proceder al uso. Compruebe que ha recibido todos los elementos sin daños antes de aceptar la entrega de la compañía de transporte.

Informe a **LINCOLN ELECTRIC®** en el 0825 132 132 para notificar los posibles daños sufridos durante el envío. Su máquina se ha probado por completo en la fábrica, por lo que es posible que encuentre alguna muestra de corte de metal en el depósito de agua de la misma.

V	Cant.	Descripción	Número de pieza	
	1 Máquina TORCHMATE™ 1530w con unidad de corte con plasma FLEXCUT™ 125 CE		AS-CM-TMT1530WF125	
		0		
	1	Máquina TORCHMATE™ 1020w con unidad de corte con plasma FLEXCUT™ 125 CE	AS-CM-TMT1020WF125	
		0		
	1	Máquina TORCHMATE™ 1530w con unidad de corte con plasma TOMAHAWK® 1538	AS-CM-TMT1530WTH80	
	0			
	1	Máquina TORCHMATE™ 1020w con unidad de corte con plasma TOMAHAWK® 1538	AS-CM-TMT1020WTH80	
	1 Paquete de consumibles de inicio LC125M (FLEXCUT™ BK14300-SK		BK14300-SK	
	0			
	1	Paquete de consumibles de inicio LC100M (TOMAHAWK ® 1538)	BK12849-SK	
	1	Pack TORCHMATE™ TM-CAD/CAM	AS-CP-LCSCADCAM	
	2	Plateguard red	AS-CW-005981	


Cuando desembale la **TORCHMATE™ 1020w-1530w**, retire la película de plástico y examine la máquina para detectar posibles daños. En caso de daño, no acepte el envío.


Se requiere un puente grúa o una carretilla elevadora para colocar la máquina en su posición de funcionamiento. No levante la máquina por el lado de la cadena portacables o de la entrada de los cables. Una vez que la máquina esté en posición, nivele la mesa usando las patas ajustables.

Asegúrese de que la mesa no se mueva.

El modelo TORCHMATE™
1020w-1530w se suministra
con cierres de seguridad
instalados de fábrica. Los
dispositivos de cierre deben
retirarse antes de que la
máquina pueda funcionar. NO
vuelva a colocar los pernos
en su lugar después de quitar
los dispositivos de cierre,
ya que esto causará daños
irreversibles al pórtico.

Prioridad para la seguridad

Los equipos **TORCHMATE™ 1020w-1530w** y **LINCOLN ELECTRIC®** se han diseñado y fabricado teniendo en cuenta la seguridad. Sin embargo, su seguridad será mayor si la instalación es correcta y si usted realiza un uso razonable de los mismos.

ADVERTENCIA

NO INSTALE, UTILICE O REPARE ESTE EQUIPO SIN LEER LAS INSTRUCCIONES DE SEGURIDAD DE ESTE MANUAL. <u>Piense</u> antes de actuar y sea cauteloso.

Instrucciones generales de seguridad:

Lea y comprenda las instrucciones de seguridad generales del manual específico 86957050 suministrado con este equipo.

Ruido aéreo:

Consulte el manual específico 86957050 suministrado con este equipo.

Instrucciones particulares de seguridad:

Protéjase y proteja a los demás frente a los riesgos de sufrir heridas graves o la muerte.

Mantenga a los niños alejados.

Si lleva un marcapasos, consulte con su médico antes de utilizar la máquina.

Asegúrese de que los procedimientos de instalación, utilización, mantenimiento y reparación sean realizados <u>únicamente</u> por personal cualificado.

Condiciones de manipulación

Para las operaciones de instalación o mantenimiento, el operario deberá utilizar una carretilla elevadora adecuada y levantar la **TORCHMATE™ 1020w-1530w** por el lado opuesto a la cadena portacables.

Estabilidad

La máquina debe ajustarse con las patas niveladoras hasta quedar estable.

«Queda **prohibido** subirse a la estructura de la máquina por lugares diferentes a las plataformas y pasarelas previstas a tal fin.

Para acceder a los equipos en altura, el usuario debe utilizar un medio de acceso reglamentario, como una pasarela móvil segura, una góndola elevadora, etc.


Limpiar periódicamente la zona de trabajo.

Antes de cualquier operación en la antorcha, es <u>obligatorio</u> apagar el generador **FLEXCUT 125 CE** o **TOMAHAWK**® **1538**.

Condiciones de uso:

- No se debe colocar ningún objeto en las trayectorias de rodamiento.
- No subirse a la cadena portacables.
- Antes de manipular las chapas, asegúrese de que se respete la seguridad de las personas y los bienes.
- Antes del uso de la máquina, asegúrese de que todos los elementos de protección estén en colocados.

- No debe realizarse ninguna intervención de mantenimiento con la máquina bajo tensión.
- En caso de ausencia prolongada del operario, se cerrarán los puntos de entrada de energía (eléctricos y de fluidos).
- Antes de cualquier intervención personal, cortar la alimentación eléctrica de la máquina (basta con el cierre de un botón de parada de emergencia).

Cualquier desplazamiento de la máquina requerirá una nueva nivelación de la mesa.

La máquina no debe modificarse bajo ningún concepto. La máquina no es un elemento de anclaje para un medio de manipulación.

Es obligatorio llevar equipos de protección individual (EPI) y ropa de trabajo que cubra el cuerpo, sin corbata y con el pelo recogido, en la zona de trabajo.

El mantenimiento <u>debe</u> realizarse con el equipo apagado.

Desconectar y bloquear con candado todas las fuentes de corriente es <u>obligatorio</u>.

Las líneas de parada de emergencia y de seguridad <u>deben</u> interconectarse y probarse siguiendo el diagrama eléctrico de la máquina.

Manipulación de las piezas:

• Los medios de manipulación de las piezas cortadas o para cortar no forman parte del material que suministramos y corren a cargo del cliente. Por tanto, este debe adoptar todas las medidas de protección adecuadas al medio de manipulación de las piezas.

- ATENCIÓN: Durante la manipulación de las chapas a cortar se deberán tomar las precauciones mínimas para evitar impactos sobre la máquina o las trayectorias de rodamiento.
- El impacto sobre uno de estos elementos puede provocar un fallo de escuadrado o un mal funcionamiento del eje eléctrico y, por consiguiente, un corte de las piezas incorrecto. Las maniobras accidentales pueden suponer un riesgo de arranque en movimiento.
- Al entrar en la zona situada entre las trayectorias de rodamiento, el operario puede quedar atrapado entre las piezas y la máquina.
- La máquina en funcionamiento debe ser supervisada por un operario con formación.

Seguridad del láser:

El láser utilizado es de clase 1M.

Antes de utilizar la máquina. Verifique que las cubiertas de protección de los componentes eléctricos y mecánicos están colocadas y atornilladas antes de poner el aparato en marcha. Cubiertas de protección atornilladas.

Cuando ajuste el punto láser, asegúrese siempre de que el haz no se dirige a su ojo ni a los ojos de las personas cercanas a la máquina. Mantenga siempre visible el punto sobre la chapa, preferiblemente apuntando hacia abajo.

Queda prohibido cualquier uso distinto de los usos específicos descritos en este documento.

Riesgo de radiación - Lesiones oculares y cutáneas

La protección de los ojos frente a la radiación láser visible la proporcionan normalmente los reflejos oculares, en particular el reflejo palpebral. Sin embargo, se recomienda no mantener intencionadamente el ojo en el haz. La penetración del haz en el ojo a través de un dispositivo óptico (por ejemplo, unos prismáticos) es peligrosa.

Longitud de onda	520 nm (verde)
Potencia de salida	3,3 mW
Clase de láser	1M
Tipo de haz	Cruz verde (enfoque ajustable), línea de 2 mm (0,08") a 3 m (118")
Tipo de óptica	Enfoque ajustable
Tensión de alimentación	24 VDC
Temperaturas de utilización	0 °C / +50 °C (32 °F / 122 °F)

7

La mesa de agua recoge la mayoría de las partículas sólidas y una parte de las emisiones gaseosas de los humos nocivos.

Sin embargo, sus concentraciones residuales, combinadas con las sustancias ya presentes en el aire ambiental procedentes de otras fuentes de contaminación, pueden superar los valores límite o los valores de cresta de exposición profesional.

De acuerdo con la normativa:

- El valor límite de exposición a corto plazo (durante 15 minutos) de NO₂ (contaminante mayoritario NOx) debe ser inferior a 6 mg/m³.
- El valor límite de exposición profesional (durante 8 horas) de NO₂ (contaminante mayoritario NOx) debe ser inferior a 1,2 mg/m³.

En el caso de un uso de 2 horas de corte repartidas a lo largo de una jornada de 8 horas (15 minutos de corte/hora), a título indicativo (véase la nota 1), abajo encontrará una estimación de los caudales de aire fresco necesarios para no superar el valor límite de exposición al trabajar en chapas de acero con un espesor de 25 mm. Este caso es más desfavorable que aquellos en los que se trabaja con acero con un espesor de 10, acero inoxidable con unos espesores de 10 y 20. Los **TORCHMATE™ 1020w-1530w** no están previstos para el corte de aluminio. El corte de aluminio sobre mesa de agua es peligroso: riesgo de explosión debido a emisiones de hidrógeno.

	Área de	Área de	Área de	Área de
	producción	producción	producción	producción
	Altura 5 m	Altura 5 m	Altura 5 m	Altura 5 m
	Anchura 5 m	Anchura 10 m	Anchura 10 m	Anchura 10 m
	Longitud 10 m	Longitud 10 m	Longitud 15 m	Longitud 25 m
Volumen (m³)	250	500	750	1250
Caudal de aire fresco (m³/h) necesario para no superar el valor límite de exposición a corto plazo (15 minutos) de NO ₂ de 6 mg/m³	420	170	0	0
Caudal de aire fresco (m³/h) necesario para no superar el valor límite de exposición profesional (8 horas) de NO ₂ de 6 mg/m³	3300	3270	3240	3200

Nota 1: La concentración mencionada es una indicación de valor medio en el volumen. En realidad, es mayor cerca de la mesa.

La cantidad de humos residuales emitidos depende en gran medida de las calidades de las chapas cortadas, los ajustes de los parámetros de corte y la altura del nivel de agua.

Por estos motivos, **LINCOLN ELECTRIC**[®] no puede comprometerse a ofrecer valores precisos de concentración de humos en el puesto de trabajo.

Si se quieren tener en cuenta todas las posibles condiciones de uso, solo las mediciones de exposición individual realizadas *in situ* por un organismo autorizado pueden determinar las concentraciones obtenidas para definir las posibles ventilaciones requeridas.

Medición del ruido:

Las mediciones del ruido realizadas en TORCHMATE™ 1020w-1530w equipada con un FLEXCUT 125 CE con una antorcha LC125M (medición M1 y M2) o con un TOMAHAWK® 1538 (medición M1) con una antorcha LC100M con arreglo a la Directiva 2006/42/CE relativa a las máquinas permiten extraer las conclusiones recogidas en la siguiente tabla:

LC125M		CONDICIONES DE MEDICIÓN			
LC100	M	M1		M2	
Intensidad		8:	5 A	12	25 A
Material		Acero al cark	oono de: 8 mm	Acero al carb	ono de: 20 mm
Gas		Aire cor	mprimido	Aire co	mprimido
		Nivel LAeq en dB(A)	Nivel LCpeak en dB(C)	Nivel LAeq en dB(A)	Nivel LCpeak en dB(C)
	1 metro	101,2	114,3	95,2	108
Distancia	2 metros	96,2	109	90,6	103,6
del punto de medición a	3 metros	93,2	106,3	89	103,8
la antorcha	4 metros	90,8	103,8	85,9	98,6
	5 metros	89,7	102,6	84,4	98,8

Preparación del suelo

A la hora instalar un sistema de corte CNC **LINCOLN ELECTRIC®** en su taller, son muchos los factores que influirán en el potencial de productividad, la facilidad de uso de la máquina y la seguridad del operario. Los principales factores a tener en cuenta son la disposición física y la colocación de la máquina en las instalaciones; la disponibilidad de energía eléctrica, de una toma de tierra para interferencias electromagnéticas, de aire comprimido y de otros gases comprimidos; así como la existencia de una ventilación adecuada.

Para instalar la máquina se necesita un suelo estable de tipo industrial, por ejemplo.

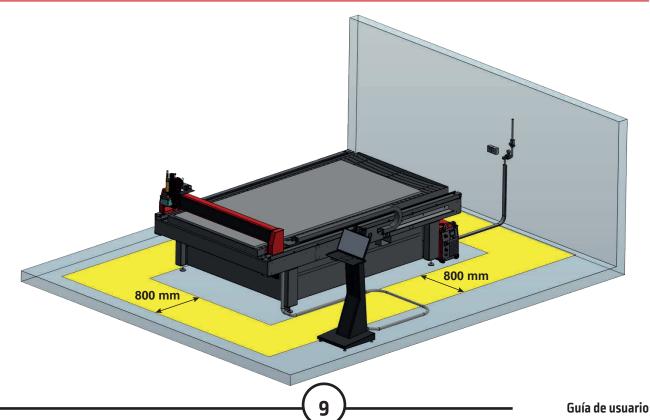
Losa de hormigón de un suelo de una pieza preparado desde hace 21 días como mínimo (norma BAEL 93), con un espesor de 200 mm. El grosor de la losa de hormigón y su armadura se dan a título indicativo y deben comprobarse en función de las características del terreno.

<u>O</u>

Largueros de hormigón de una sola pieza. Hormigón 20 Mpa (350 kg/m³) con armadura metálica.

Planicidad en todas las instalaciones con trayectorias de rodamiento complementarias ±10 mm. Desnivelado de la losa 30 mm (5 mm/m máx.).

- A la hora de preparar la instalación del sistema de corte CNC LINCOLN ELECTRIC[®], asegúrese de que haya espacio suficiente. Se deben dejar 800 mm alrededor de la máquina.
- Levante la máquina con ayuda de un puente grúa o una carretilla elevadora desde el lado opuesto a los cables únicamente.
- Se debe utilizar una puesta a tierra dedicada, que se instalará de forma que se reduzca el riesgo de tropezar.
- El cable de alimentación incluido está limitado a 3 metros.


A

A la hora de instalar la **TORCHMATE™ 1020w-1530w** es necesario tener en cuenta la longitud de los cables:

- El cable de alimentación de la **TORCHMATE™ 1020w-1530w** incluido está limitado a 3 metros
- El cable de alimentación de la **FLEXCUT™ 125 CE** o de la **TOMAHAWK® 1538** incluido está limitado a 5 metros.
- El cable de conexión equipotencial de 162 incluido está limitado a 10 metros.

Para evitar las proyecciones de agua en la estación **FLEXCUT™ 125 CE** o **TOMAHAWK® 1538** le aconsejamos colocar dicha estación bajo la mesa de agua.

Características generales TORCHMATE™ 1020w

Modelo de máquina	TORCHMATE™ 1020w
Control numérico	VMD SP3
Dimensiones de la chapa	1000 × 2000 mm
Dimensiones de las máquinas	Anchura: 1750 mm Longitud: 2900 mm Altura: 1500 mm
Peso neto de la máquina (sin líquido)	850 daN
Capacidad de agua	260 litros
Altura entre la parte inferior de la viga y la parte superior de la tabla	102 mm
Capacidad de espesor de la mesa	20 mm con una chapa de 1500x2000 mm 25 mm en la mitad de la superficie
Motores	paso a paso/2,8 Nm
Reductores	Reductores con correas 3:1 Embrague por muelles pretensados
Guías y accionamiento	Guía longitudinal de patines de 20 mm con cremalleras Guía transversal de patines de 15 mm con cremalleras
Tiempo de uso recomendado	4 horas/día (2 horas de corte efectivas)
Certificación	Certificación CE

Características generales TORCHMATE™ 1530w

Modelo de máquina	TORCHMATE™ 1530w
Control numérico	VMD SP3
Dimensiones de la chapa	1500 × 3000 mm
Dimensiones de las máquinas	Anchura: 2250 mm Longitud: 3900 mm Altura: 1500 mm
Peso neto de la máquina (sin líquido)	1100 daN
Capacidad de agua	495 litros
Altura entre la parte inferior de la viga y la parte superior de la tabla	102 mm
Capacidad de espesor de la mesa	20 mm con una chapa de 1500 x 3000 mm 25 mm en la mitad de la superficie
Motores	paso a paso/2,8 Nm
Reductores	Reductores con correas 3:1 Embrague por muelles pretensados
Guías y accionamiento	Guía longitudinal de patines de 20 mm con cremalleras Guía transversal de patines de 15 mm con cremalleras
Tiempo de uso recomendado	4 horas/día (2 horas de corte efectivas)
Certificación	Certificación CE

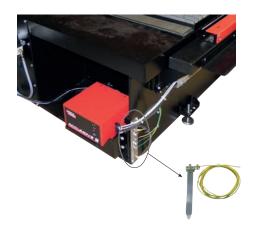
Guía de usuario

Opciones

Marcador	Ver capítulo "Instalación y configuración del marcador"
	l doi

Puesta a tierra de la máquina

Se debe utilizar una puesta a tierra adecuada para garantizar la seguridad del personal y eliminar el ruido de alta frecuencia. La base para una puesta a tierra adecuada es una barra de tierra eficaz. Un punto de masa se conecta al vástago con un conductor corto y pesado. Para crear una barra de tierra se puede colocar una barra de acero recubierto de cobre sencilla en el suelo. Se debe instalar una barra de tierra. Consulte con un técnico cualificado para comprobar la puesta a tierra del sistema.


Utilice un cable trenzado de 16² para conectar el vástago de puesta a tierra a la mesa para la puesta a tierra suministrada por el cliente.

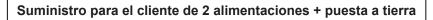
Para garantizar el funcionamiento adecuado de las tablas de corte CNC, deberá llevar un cable 16² desde la barra de conexión a tierra hasta la barra de tierra dedicada.

Vuelva a colocar la unidad de corte con plasma en su ubicación correspondiente. Vuelva a instalar el cable de alimentación y la puesta a tierra de la mesa en la parte delantera de la máquina.

La unidad de corte con plasma FLEXCUT™ 125 CE o TOMAHAWK® 1538 se suministra con una puesta a tierra unida a la barra de conexión a tierra. Además, hay una puesta a tierra de trabajo fijada a la estrella de puesta a tierra para su conexión a la pieza a cortar. Si la pieza está pintada o sucia, puede que sea necesario exponer el metal desnudo para que la conexión eléctrica sea buena.

La barra de tierra no se suministra con la máquina.

Requisitos en materia de electricidad, aire, agua e instalación


Consulte el manual del operario de la **FLEXCUT™** 125 **CE** o de la **TOMAHAWK®** 1538 para obtener instrucciones completas sobre la instalación y el uso. Solo un electricista cualificado puede conectar los cables de entrada de la **TORCHMATE™** 1020w-1530w y la unidad de corte con plasma **FLEXCUT™** 125 **CE** o de la **TOMAHAWK®** 1538 Plasma. Las conexiones deben realizarse siguiendo todos los códigos eléctricos locales y nacionales. De lo contrario, se corre el riesgo de sufrir lesiones o la muerte.

La **TORCHMATE™ 1020w-1530w** está diseñada para recibir una tensión de entrada de 220/230 V, monofásica de 50 o 60 Hz. Antes de conectar el equipo a la alimentación, asegúrese de que la tensión, la fase y la frecuencia de la corriente de entrada se correspondan con las indicaciones que aparecen en la placa de identificación.

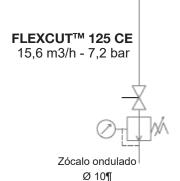
La **FLEXCUT™** 125 **CE** o la **TOMAHAWK®** 1538 está diseñada para recibir una tensión de entrada de 400 V, trifásica de 50 o 60 Hz. Antes de conectar el equipo a la alimentación, asegúrese de que la tensión, la fase y la frecuencia de la corriente de entrada se correspondan con las indicaciones que aparecen en la placa de identificación.

ADVERTENCIA

El interruptor de encendido/apagado de la **FLEXCUT™ 125 CE** o de la **TOMAHAWK® 1538** no se ha diseñado como un disyuntor para este equipo. Solo un electricista cualificado puede conectar los cables de entrada de la **TORCHMATE™ 1020w-1530w**.

Máquina:

0,75 Kw - 0,9 kVA - 4A - 220/230 V
Toma de pared hembra monofásica 2P+T 230V/16A



Generador FLEXCUT™ 125 CE:

22 Kw - 28 kVA - 40A -400V Toma de pared hembra

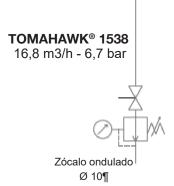
trifásica 3P+T 400V/63A

Tierra del edificio 5 ohmios máx.

Suministro para el cliente de 2 alimentaciones + puesta a tierra

Máguina:

0,75 Kw - 0,9 kVA - 4A - 220/230 V
Toma de pared hembra monofásica 2P+T 230V/16A


Generador TOMAHAWK® 1538:

13,7 Kw - 17,4 kVA - 20A - 400V

Toma de pared hembra trifásica 3P+T 400V/32A

÷

Tierra del edificio 5 ohmios máx.

La máquina **TORCHMATE™ 1020w-1530w** debe utilizarse con:

- un aire comprimido seco y libre de aceite o nitrógeno
- un aire comprimido limpio. Se recomienda usar un filtro en línea estándar nominal de 5 micras, aunque para obtener un rendimiento óptimo es preferible emplear un prefiltro de 3 micras.

Se <u>DEBE</u> utilizar un regulador de alta presión con el compresor o la bombona de alta presión. La presión de alimentación debe ser de 7,2 bar con un caudal de 15,6 m³/h.

LA PRESIÓN DEL AIRE DE ALIMENTACIÓN NO DEBE SUPERAR EN NINGÚN MOMENTO LOS 7,5 BARES; DE LO CONTRARIO, SE PODRÍA DAÑAR LA MÁQUINA.

ADVERTENCIA

La calidad del aire para el plasma tiene un impacto considerable sobre el resultado del corte. El usuario debe prever una fuente de aire comprimido provista de un regulador capaz de suministrar los caudales y presiones recomendados. El aire debe estar limpio, sin aceite ni grasa. CLASE DE CALIDAD: según la norma ISO 8573-1

Clase de contaminantes sólidos	Clase 3	Granulometría 5µm	Concentración en masa 5 mg/m³	
Clase de agua	Clase 3	Punto de rocío máx. bajo presión -20 °C		
Clase de aceite total	Clase 5	Concentración 25 mg/m³		

El aire debe suministrarse al plasma a través de una tubería de 10 mm de diámetro y un acoplador de desconexión rápida de 1/4 NPT. Los conductos de aire deberán colocarse de forma que no haya riesgo de tropezar.

El agua debe colocarse en el depósito de la mesa antes de poner la máquina en funcionamiento. Se pueden utilizar inhibidores del óxido, como productos sin nitrito de sodio, para inhibir la corrosión de las mesas de agua CNC de corte con plasma. Se invita a los operarios a utilizar un producto listo para su uso destinado a las mesas CNC de corte con plasma.

Capacidad de agua: La TORCHMATE™ 1530w tiene una capacidad aproximada de 495 litros (de los cuales 10 l de «Plateguard red» y el resto, agua). La TORCHMATE™ 1020w tiene una capacidad aproximada de 260 litros (de los cuales 7,5 l de «Plateguard red» y el resto, agua).

El nivel es correcto cuando el líquido alcanza el nivel superior de los listones.

13

Controles y parámetros de la FLEXCUT™ 125 CE plasma

Consulte el manual de uso de la **FLEXCUT™ 125 CE** suministrado con la unidad de corte con plasma. Cuando la máquina está encendida y se está realizando la prueba automática, todos los indicadores del panel de control se iluminan.

Controles del panel frontal

1	Pantalla LCD
2	Aire principal, medidor de presión de gas y botón del regulador
3	Botón de inicio
4	Interruptor de encendido/apagado
5	Conexión de la antorcha
6	Conexión del cable de trabajo
7	Botón de control del menú
8	Purga

Controles del panel trasero

9	Entrada de aire o gas (1/4 PO [6,35 MM]) Conexión rápida NPT
10	Acceso al panel de reconexión
11	Sujetacable del cordón de entrada
12	Interfaz CNC de 14 clavijas
13	Ventilador

Características principales del generador FLEXCUT™ 125 CE plasma

Peso	53 kg
Alimentación principal	380/400/415 V (+/-10%) - Trifásica - 50 - 60 Hz
Corriente absorbida	40 A al 100 %
Factor de marcha	125 A-175 V al 100 % (40 °C)
Tensión en vacío	300 V
Regulación de la corriente de corte	20 a 125 A
Suministro de gas	Aire comprimido – 6,5 bares - 260 l/min (refrigeración y gas de corte)

Características principales de la antorcha LC125M

Cebado	Por contacto sin HF	
Longitud del grupo	7,5 metros	
Conector	Conector central universal	

Rendimiento de la instalación FLEXCUT™ 125 CE + antorcha LC125M

Materiales	Acero al carbono-aceros inoxidables	
Espesor completo de chapa	Hasta 25 mm (acero)	
Calidad de corte angular	Rango 4-5 según la norma ISO 9013	
Vida útil de los consumibles	350 ciclos de corte (20 s) a 125 A y 750 ciclos a 105 A	
Procedimientos conmutables sin cambio de consumibles	Aire comprimido – 6,5 bares - 260 l/min (refrigeración y gas de corte)	

Uso de los consumibles de la antorcha LC125M - FLEXCUT™ 125 CE

Consulte el manual del operario de la **FLEXCUT™ 125 CE** para obtener instrucciones completas sobre la instalación y el uso. No apriete demasiado los consumibles. Apriete hasta que las piezas queden correctamente instaladas.

Pieza de desgaste antorcha LC125M

Conjunto aislador delantero (LC125M)	BK14300-18	1 ud.
---	------------	-------

Paquete de consumibles de inicio para antorcha LC125M (BK14300-SK)

Tallacte as estimated as missis para anticolor as (2000)			
Electrodo (LC125M)	BK14300-1	2 ud.	
Difusor 45 A-125 A (LC125M)	BK14300-13	1 ud.	
Boquilla 45A (LC125M)	BK14300-7	1 ud.	
Boquilla 65A (LC125M)	BK14300-8	1 ud.	
Boquilla 85A (LC125M)	BK14300-9	1 ud.	
Boquilla 105A (LC125M)	BK14300-10	2 ud.	
Boquilla 125A (LC125M)	BK14300-11	2 ud.	
Cofia CTP (LC125M)	BK14300-15	1 ud.	
Cofia de protección 45A - 65A (LC125M)	BK14300-3	1 ud.	
Cofia de protección 85A - 125A (LC125M)	BK14300-4	1 ud.	

Guía de usuario

Controles y parámetros de la TOMAHAWK® 1538 plasma

Consulte el manual de uso de la **TOMAHAWK**[®] **1538** suministrado con la unidad de corte con plasma. Cuando la máquina está encendida y se está realizando la prueba automática, todos los indicadores del panel de control se iluminan.

Controles del panel frontal

1	Selección del modo de corte
2	Mano-regulador de presión
3	Conexión de la antorcha
4	Indicador ON/OFF
5	Indicador de salida
6	Indicador térmico
7	Indicador fallo de presión de aire comprimido
8	Indicador de seguridad de la antorcha
9	Ajuste de la corriente de salida
10	Conexión del cable de trabajo
11	Interfaz CNC

Controles del panel trasero

12	Entrada de aire
13	Ventilador
14	Cable de alimentación
15	Interruptor de encendido/apagado

Características principales del generador TOMAHAWK® 1538 plasma

Alimentación		400V ± 15% trifásico				
Potencia absorbida		7,1 kW al 100% FM 13,7 kW al 40% FM				
Frecuencia						
		Salida nom	inal a 40°C			
Factor de marcha		Corriente	de salida		Tensión de salida	
100% 60% 40%		85 10	0 A 6 A 0 A		104 VDC 114VDC 120VDC	
		Gama de corri	ente de salida			
Gama de corriente de d	corte	orte Tensión en vacío máxima Corriente de arco piloto			riente de arco piloto	
20 - 100A	320 VDC			20 A		
		Aire con	nprimido			
Caudal Presión de servicio						
280 ± 20% l/min a 5,5 bar			6 - 7 bar			
	Cable de alimentación y fusibles recomendados					
Fusible (re disyuntor cara		Cable de alimentación		imentación		
32	А	4 x 4 mm²		mm²		
Dimensiones						
Altura		Anchura	Longitu	d	Peso	
455 mm		301 mm	640 mm	1	34 kg	
Temperatura de funcionar	Temperatura de funcionamiento			a +40°C		
Temperatura de almacenamiento			-25C°	a +55°C		

Características principales de la antorcha LC100M

Cebado	Por contacto sin HF	
Longitud del grupo	7,5 metros	
Conector	Conector central universal	

Rendimiento de la instalación TOMAHAWK® 1538 + antorcha LC100M

Materiales	Acero al carbono-aceros inoxidables
Espesor completo de chapa	Hasta 25 mm (acero)
Calidad de corte angular	Rango 4-5 según la norma ISO 9013
Procedimientos conmutables sin cambio de consumibles	Aire comprimido – 5,5 bares - 280 l/min (refrigeración y gas de corte)
Gama de corriente de corte	40 - 60 - 80A

Consulte el manual del operario de la **TOMAHAWK® 1538** para obtener instrucciones completas sobre la instalación y el uso. No apriete demasiado los consumibles. Apriete hasta que las piezas queden correctamente instaladas.

Paquete de consumibles de inicio para antorcha LC100M (BK12849-SK)

Electrodo (LC100M)	BK12849-3	5 ud.	
Difusor 60A-80A (LC100M)	BK12849-9	1 ud.	
Boquilla 40A (LC100M)	BK12849-4	1 ud.	
Boquilla 60A (LC100M)	BK12849-5	2 ud.	
Boquilla 80A (LC100M)	BK12849-6	2 ud.	
Anillo (LC100M)	BK12849-9	1 ud.	
Cofia CTP (LC100M)	BK12849-22	1 ud.	
Cofia de protección 40A (LC100M)	BK12849-14	1 ud.	
Cofia de protección 60A - 80A (LC100M)	BK12849-15	1 ud.	

Procedimiento plasma 100A manual: TOMAHAWK® 1538 + antorcha LC105

Además de la antorcha automática **LC100M**, su instalación **TOMAHAWK 1538** se suministra con la antorcha manual **LC105**.

Esta última podrá usarse ocasionalmente, posiblemente para corte de esqueleto. Su uso aunque simple requiere algunas precauciones:

- Desconecte la TOMAHAWK 1538 de la tensión
- Quite el cable de control externo proveniente de la máquina
- Quite la toma de la antorcha LC100M
- Conecte la toma de la antorcha LC105
- · Compruebe que los consumibles son adecuados para la intensidad de corte deseada
- Conecte la TOMAHAWK 1538 a la tensión.

Para volver al modo automático con la antorcha **LC100M**:

- Desconecte la TOMAHAWK 1538 de la tensión
- Quite la toma de la antorcha LC105
- Conecte la toma de la antorcha LC100M
- Vuelva a conectar el cable de control externo proveniente de la máquina.
- Compruebe que los consumibles son adecuados para la intensidad de corte deseada
- Conecte la **TOMAHAWK 1538** a la tensión

Puesta en marcha de la TORCHMATE™ 1020w - 1530w

Para poner en marcha la máquina CNC **TORCHMATE™ 1020w-1530w**, siga las instrucciones recogidas a continuación. La guía del usuario completa está disponible en forma de archivo incorporado en **VMD**. Utilice el botón con el signo de interrogación para acceder al archivo.

Etapa 1

Ponga el interruptor de alimentación **ACCUMOVE**® en ON. Gire el botón de parada de emergencia un cuarto de vuelta en el sentido de las agujas del reloj. De este modo, Accumove recibirá alimentación y se pondrá en marcha el ordenador.

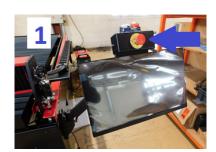
Si aparece una pantalla de WINDOWS gris, deslice el dedo hacia la parte superior de la pantalla táctil. Introduzca «cncop» en la línea de contraseña. Pulse la flecha.

Etapa 2

Una vez que el ordenador esté en marcha, se ejecutará el programa Visual Machine Designer «**VMD**».

Etapa 3

En la pantalla, pulse DATUM. Esto activará los variadores. El cabezal se desplazará a la esquina inferior izquierda de la mesa hasta la posición «HOME». La máquina ya está lista para funcionar.


Parada de la TORCHMATE™ 1020w-1530w

Primer método

Apagado de la máquina cuando permanece alimentada por la red eléctrica:

Etapa 1

Ponga la máquina en parada de emergencia, el **ACCUMOVE**® se apaga.

Etapa 2

Presione la tecla "Extinction".

Etapa 3

La pantalla se apaga y la PC entra en modo espera prolongada.

Para encender la máquina:

Etapa 4 Quite la parada de emergencia, el **ACCUMOVE**® arranca.

Etapa 5 La PC observa la actividad de red y sale del modo espera.

Etapa 6 El **VMD** se inicia.

Etapa 1 Ponga la máquina en parada de emergencia.

Etapa 2 Deslice el dedo por la pantalla desde el borde izquierdo hacia el centro.

Etapa 3 Presione el botón "Windows"

Etapa 4 Presione "Shutdown"

Sleep
Shut down
Restart

A
Accress 2016
O

C

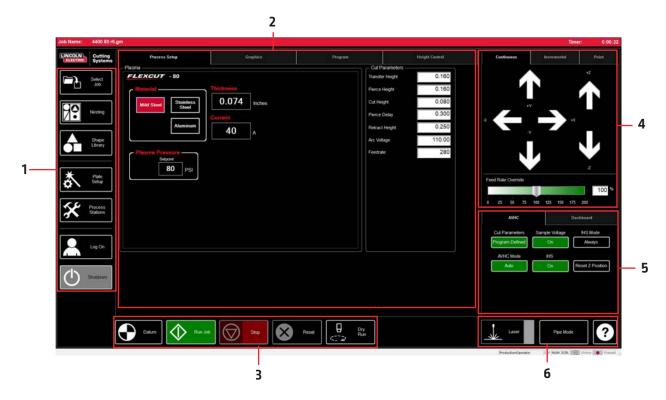
Etapa 5 Corte la alimentación eléctrica a la máquina.

Para encender la máquina:

Etapa 7 Ponga la alimentación eléctrica a la máquina.

Si el PC es "shuttle" (con el botón ON/OFF): presione el botón de inicio del PC.

Etapa 9 Si el PC es metálico: el PC se inicia automáticamente


Etapa 10 Quite la parada de emergencia.

Etapa 11 El VMD se inicia.

Etapa 8

Vista preliminar de Visual Machine Designer «VMD»

Visual Machine Designer (**VMD**) es el programa que se utiliza para manejar los controladores CNC **ACCUMOVE®**. La mayoría de los controles de la mesa se encuentran en la pantalla principal, donde aparecen las funciones que permiten crear y manipular los archivos. Esta guía rápida le proporcionará una visión general de las funciones y su utilización.

La pantalla principal de **VMD** se divide en secciones para facilitar la navegación y el funcionamiento. En las secciones se recoge una vista general de todos los botones y las funciones.

- 1. Job group Abre y controla todos los aspectos del archivo de entrada o de la creación de proyectos.
- 2. View Screen Muestra la configuración del proyecto, el gráfico del proyecto, el código g del proyecto o una gráfica de los movimientos del portaherramientas.
- 3. Datum/Program Zero Establece el punto cero de la máquina a través de la referencia DATUM, así como el punto cero programado en la máquina.
- 4. Cut Parameters/AVHC Parámetros asociados al control de la altura y sus funciones.
- 5. Run group Estos botones controlan el inicio y el fin del proyecto.
- 6. Jogging Controla el movimiento de la antorcha en la máquina con la velocidad de progresión programada.
- 7. Cuadro de indicadores Muestra las coordenadas del cabezal y todos los indicadores monitoreados en la máquina.

El JOB GROUP abarca todas las funciones relacionadas con el proyecto. Este grupo permite seleccionar un proyecto, crear un proyecto (biblioteca de formas) o modificar las funciones del proyecto de manera directa.

Seleccionar un trabajo:

A continuación se indica cómo abrir un trabajo en VMD. En la zona SELECT JOB se encuentran la carpeta «HOT FOLDER» y los trabajos cargados en ella. * C:\Controller-Data\Jobs es la HOT FOLDER.

Para seleccionar otra fuente, pulse BROWSE para abrir el cuadro de diálogo de WINDOWS estándar.

La pantalla PREVIEW mostrará el trabajo seleccionado en la lista.

IS JOB KERF COMPENSATED: cambia el programa para adaptarse a la compensación (KERF). Si genera las piezas a partir de TMCAD/VMD NEST, seleccione SÍ.

Si las piezas de la biblioteca de formas requieren una corrección KERF, seleccione NO.

Utilice el ajuste del diámetro KERF en TOOL LIBRARY.

Anidación:

Esto abre VMD NESTING.

Consulte la sección NESTING para acceder a una descripción general de estas funciones.

Biblioteca de formas:

Con ella podrá crear una forma definida por el usuario a partir de 27 piezas comunes.

Para obtener más detalles, consulte la sección USING THE SHAPE LIBRARY.

Configuración del proyecto:

PLATE SETUP le permite realizar modificaciones en el propio proyecto.

ROW AND COLUMN: Le permite añadir múltiplos añadiendo números para generar un cuadro GRID ARRAY del proyecto seleccionado.

TRANSFORMS: Le permite copiar (MIRROR), rotar (ROTATE) o cambiar la escala (SCALE) del proyecto.

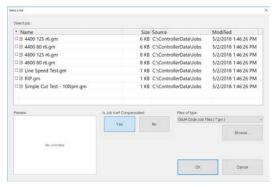

MATERIAL SENSING: Esta función se utiliza junto con los parámetros CUT PARAMETERS para fijar una medida para la altura del material (TOP OF MATERIAL) y el espesor del material (MATERIAL THICKNESS) de la pieza a cortar.

PLATE ALIGNMENT: Se utiliza para que el controlador «incline» el trabajo con relación al material colocado en diagonal sobre la mesa.

SET PLATE ORIGIN: Sirve para fijar el origen de la chapa.

GO TO PLATE ORIGIN: Devuelve el cabezal a la posición PLATE ORIGIN.

Process Stations:

PROCESS STATIONS permite configurar y controlar los parámetros de las herramientas instaladas en la máquina.

Los plazos KERF y DWELL se pueden añadir programando el *offset* con el marcador neumático.

Log On:

LOG ON permite cambiar de usuario en el programa VMD.

ADMIN abre los parámetros de la máquina (MACHINE SETTINGS) (protegido mediante contraseña).

OPERATOR designa al usuario estándar con una interfaz estándar.

PRODUCTION OPERATOR designa al usuario estándar con una interfaz simplificada.

TECH SUPPORT es utilizado únicamente por el personal de asistencia técnica (protegido mediante contraseña).

Shutdown:

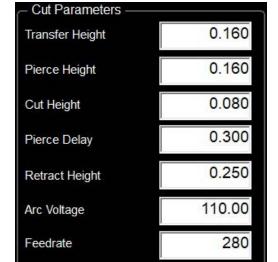
SHUTDOWN permite cerrar VMD y apagar el ordenador.

Debe utilizarse cuando se apague el ordenador.

Aparecerá la ventana emergente «TURN OFF ACCUMOVE CONTROLLER».

Pulse el botón de parada de emergencia para cortar la alimentación del controlador **ACCUMOVE**®.

Pulse OK. El PC se pone en modo de espera.


La pantalla principal VIEW SCREEN de VMD contiene pestañas que controlan y muestran el trabajo y los parámetros correspondientes para el corte del material. La pestaña situada en la parte superior de la pantalla ofrece al operario diferentes vistas y controles para la planificación del trabajo de corte.

Process setup:

La pestaña PROCESS SETUP se utiliza para introducir el material que se quiere cortar. Una vez introducido, se actualizan los CUT PARAMETERS con respecto a los parámetros de CUT CHART.

- Material es el tipo de material que se va a cortar.
- Thickness es el espesor del material.
- Current es el amperaje utilizado para el corte.
- Plasma Pressure muestra la presión de aire adecuada para la relación intensidad/espesor introducida.
- Selected Process ajusta los CUT PARAMETERS de los parámetros PLASMA o MARKING. (FLEXCUT™ 125 CE únicamente)

Cut Parameters:

Todos los parámetros de la pestaña CUT PARAMETERS y AVHC colocan la antorcha en una posición adecuada con respecto al material durante el funcionamiento. La mayoría de los parámetros aparecen recogidos en los cuadros de baremos de corte del manual de la **FLEXCUT™ 125 CE** o de la **TOMAHAWK® 1538** .

- Transfer Height (altura de transferencia) es la distancia a la cual la antorcha se separará del material para cebar un arco piloto, antes de desplazarse hasta la altura de perforación.
- Pierce Height (altura de perforación) es la distancia a la cual se coloca el cabezal por encima del material durante la perforación.
- Cut Height (altura de corte) es la distancia entre la punta de la antorcha y la parte superior del material durante el corte.
- Pierce Delay (periodo de perforación) es el periodo durante el cual la antorcha perfora el material antes de realizar el movimiento.
- Retract Height (altura de retracción) es la altura a la cual volverá el cabezal durante los trayectos rápidos a lo largo del proyecto.
- Arc Voltage (tensión del arco) es el valor de comparación de la realimentación mediante tensión. Si utiliza una tensión de muestra SAMPLE VOLTAGE, esta se ajustará durante el corte.
- Feedrate (velocidad de avance) se muestra/ajusta en FEEDRATE OPTIMAL en los cuadros de corte para el espesor del material y la intensidad de corte utilizados.

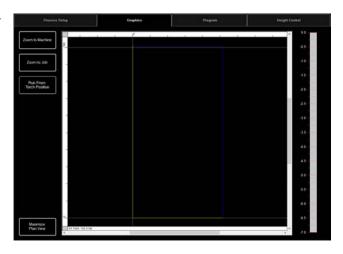
Graphics View:

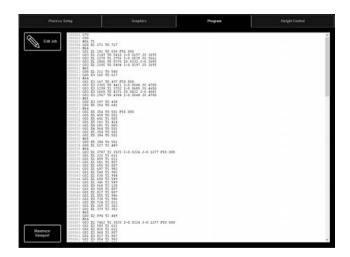
MACHINE LIMITS permite ver los límites de la máquina en azul. La posición del cabezal viene representada por líneas blancas que se cruzan. Las trayectorias asignadas a la herramienta Plasma se muestran en rojo. Las trayectorias asignadas al marcador neumático se muestran en verde. Los trayectos rápidos están representados por una línea de puntos gris.

Zoom to Machine permite hacer zoom hasta los límites programados de la máquina.

Zoom to Job permite hacer zoom en el proyecto cargado.

Run From Torch Position pone en marcha de nuevo el trabajo desde el punto en el que se encontraba la antorcha cuando paró.

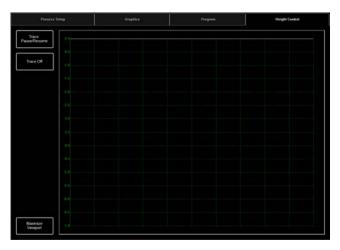

Maximize Plan View muestra todas las vistas en una sola pantalla.


Program View:

Permite ver el código g del proyecto cargado.

Edit job permite abrir el código g actual en un editor de texto.

Maximize Viewport muestra todas las vistas en una sola pantalla.


Height Control View:

Muestra en un gráfico los movimientos del portaherramientas durante el funcionamiento.

Trace Pause/Resume pone en pausa el gráfico en caso de trazado.

Trace off/on activará y desactivará la visualización de la estación del elevador controlado.

Maximize Viewport muestra todas las vistas en una sola pantalla.

Datum/Program Zero Group:

Este grupo controla el inicio de la máquina y los trabajos que se están ejecutando.

Datum:

Datum tiene diversas características. Al poner en marcha la máquina por primera vez, Datum enciende los motores y desplaza la máquina para establecer el punto cero (MACHINE ZERO).

Una vez que la antorcha se ha desplazado hacia la esquina inferior izquierda, la máquina está lista para funcionar.

Run Job:

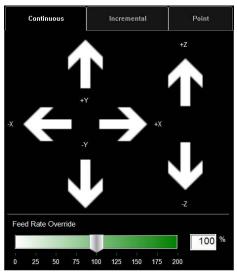
RUN JOB iniciará el trabajo cargado en VMD.

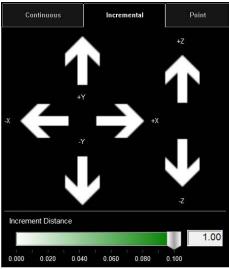
Stop:

El botón STOP detendrá la máquina durante cualquier movimiento o proceso.

Reset:

Reinicia el trabajo. Si el trabajo ha comenzado y no ha finalizado, deberá reiniciar para comenzar de nuevo el trabajo.


Active Run/Dry Run: Este botón permite cambiar entre los modos ACTIVE RUN y DRY RUN.


- ACTIVE RUN: Activa la antorcha cuando se ejecuta un trabajo.
- DRY RUN: Desactiva la antorcha. En modo DRY RUN, la antorcha simulará todos los movimientos sin activarse.

Jogging permite al usuario desplazar el cabezal pulsando la flecha de dirección. El grupo JOGGING se presenta en una pestaña, permitiendo desplazar el cabezal hacia el emplazamiento correspondiente en la mesa.

Jog:

Las teclas JOG se disponen siguiendo los movimientos de la mesa. Al pulsar hacia el centro de la tecla JOG, la antorcha se desplaza lentamente, y pulsando hacia el exterior se desplaza con mayor rapidez. La ventana JOG consta de tres pestañas diferentes:

- Continuous (continuo)
- Incremental (incremento)
- Point (punto).

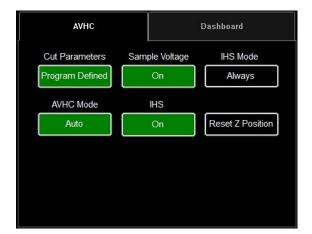
En la parte inferior de la ventana aparece el porcentaje FEED RATE OVERRIDE %. Este permite modificar la velocidad de avance del trabajo activo. Esta función se utiliza para ajustar con precisión el avance y obtener la mejor calidad de corte posible.

Continuous permite desplazar la antorcha mientras el dedo pulsa la flecha.

Incremental Jog:

Pulsar en una dirección permite desplazar la antorcha en dicha dirección utilizando la barra de ajuste de distancia de incremento para modificar la distancia.

La barra de ajuste le permite utilizar incrementos comprendidos entre 0,000 y 0,100. Puede introducir directamente cualquier número en el cuadro de diálogo.


Point Jog:

Point jog permite al usuario definir hasta dónde quiere que se desplace el cabezal y a partir de qué ubicación.

Seleccione el punto de origen de la antorcha, la velocidad de avance y las coordenadas X/Y y pulse MOVE TO POSITION.

CUT TO POSITION funciona del mismo modo, pero siguiendo la secuencia IHS y activando la antorcha. Esto permite eliminar los residuos y perfeccionar las líneas.

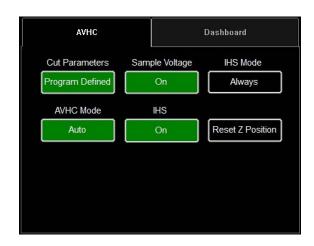
AVHC (Arc Voltage Height Control) incluye «CÓMO» gestiona el controlador el portaherramientas. El cuadro de indicadores permite al operario ver la posición del cabezal y otros indicadores de estado.

AVHC (Automatic Voltage Height Control):

En Cut Parameters se puede cambiar entre programa predefinido y programa definido por el usuario.

- <u>Program Defined</u> Los parámetros de corte se generarán automáticamente en función del tipo de material y el espesor del mismo indicados en la pestaña PROCESS SETUP (CONFIGURATION DU PROCESSUS).
- <u>User Defined</u> Puede introducir manualmente los parámetros de corte en función de los cuadros de corte que aparecen en el manual de la FLEXCUT™ 125 CE o de la TOMAHAWK® 1538.

Sample Voltage es un interruptor de encendido/apagado.


- On (con MODE: AUTO): Al inicio del corte, el controlador recibe información sobre la tensión del arco y mantiene el valor de altura de corte indicado en los parámetros de corte (CUT PARAMETERS).
- Off (con MODE: AUTO): El AVHC se ajustará únicamente en función de las tensiones de SET VOLTAGE y CURRENT VOLTAGE. Si la tensión de SET VOLTAGE es distinta de la tensión de CURRENT VOLTAGE, el portaherramientas ajustará su posición para tener en cuenta la diferencia.
- On/Off (con AVHC MODE: MANUAL): Esta función está desactivada.

IHS MODE es el proceso utilizado para detectar la altura del material y la forma en la que reacciona entre las perforaciones.

- Optimal: Optimal lleva a cabo una detección inicial (óhmica) del material y emplea un parámetro basado en el espesor del mismo para tratar otra detección óhmica. Este proceso hace que el cabezal «se libere» de la detección óhmica hasta este espesor del material, tomando como base este parámetro.
- <u>Always:</u> El cabezal detectará el material mediante detección óhmica en cada perforación.

AVHC MODE permite cambiar entre los modos MAN-UAL y AUTO.

- <u>Manual</u> La antorcha permanecerá a la altura de corte establecida en cada perforación de material.
 De este modo, no se ajustará automáticamente la altura de corte durante el corte.
- <u>Auto</u> La antorcha mantendrá la distancia introducida en CUT HEIGHT y el perfil del material, tomando como base la tensión de SET VOLTAGE y la tensión de CURRENT VOLTAGE que aparecen en el generador de plasma.

IHS (Initial Height Sense): este parámetro activa o desactiva la función de detección óhmica (OHMIC DETECTION).

- <u>ON:</u> El cabezal detectará el material cuando el capuchón óhmico entre en contacto con el material conductor puesto a tierra en la mesa. Una vez realizada la detección, el cabezal se colocará a la altura de perforación prestablecida en TRANSFER HEIGHT.
- OFF: El cabezal se desplazará hasta la altura prestablecida TOP OF MATERIAL (job setup) y se separará hasta alcanzar la altura de perforación.

RESET Z POSITION: Reinicia el eje Z a su cero. Colocar desplazando el cabezal hacia su fin de carrera en altura y restableciendo su posición cero.

Dashboard:

El cuadro de indicadores (Dashboard) muestra los indicadores y las herramientas del sistema para el operario.

Arc Voltage (Tensión del arco): Muestra el retorno de tensión del arco de plasma durante el corte.

Plasma Pierce Count: Este contador se utiliza para llevar un registro del número de perforaciones realizadas por los consumibles de plasma. El contador se debe reiniciar cada vez que se cambien los consumibles.

<u>Process (Procedimiento):</u> Muestra el procedimiento de corte en curso.

<u>Feedrate (Avance)</u>: Muestra el porcentaje de la velocidad de avance.

X, Y, Z: Indica las coordenadas de la antorcha con respecto a la máquina.

OK to Move (OK para mover): Indica el momento en el que el plasma ha perforado la chapa a cortar y está listo para iniciar el programa.

<u>IHS:</u> Indica cuándo se detecta la chapa a través del contacto ÓHMICO.

Breakaway: Indica si el impacto de la antorcha está activado o no.

El cuadro de opciones incluye los controles de las opciones añadidas. Los botones de control ON/OFF añadidos solo son visibles si se han validado en OPTIONS PANEL (Panel de opciones). A continuación encontrará las instrucciones de uso de la opción de puntero láser. La opción de corte de tubo no está disponible en la **TORCHMATE™ 1020w-1530w**.

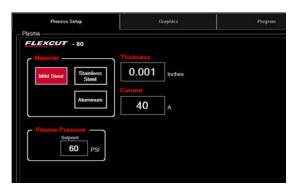
Laser Operation:

El Laser Plate Finder tiene por objetivo ayudar al operario que se encuentra en el panel de control a localizar la posición central aproximada del cuerpo de la antorcha sobre la superficie de la chapa proyectando un punto láser rojo por encima. Esto facilita la localización de la posición PLATE ORIGIN (Origen de la chapa), la alineación de la chapa y la realización de una prueba en vacío en la que el láser indicará la posición de corte aproximada de la pieza.

Para que esta opción funcione correctamente, es fundamental que la posición de la antorcha esté bien ajustada y que el espesor de la chapa se defina antes de ajustar el programa a cero, de proceder a la alineación de la chapa o de ejecutar un programa de prueba en vacío (DRY RUN) con el láser activado.

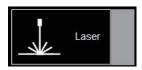
How the Laser Works:

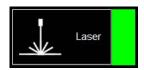
El láser se coloca con un ligero ángulo con relación a la antorcha, de modo que pasa directamente por su línea central. Con la antorcha bien posicionada en la máquina y el espesor de la chapa introducido en el sistema, el eje Z llevará a cabo un ajuste de la posición cuando se active, de modo que el punto proyectado llegará a la superficie de la chapa bajo la línea central de la antorcha.


El láser solo puede activarse cuando el sistema está en modo Dry Run, y se apaga automáticamente cuando el sistema se ajusta a Active Run y se ejecuta un programa de pieza.

Etapa 1

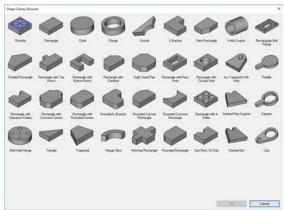
En la pestaña PROCESS SETUP (Configuración del procedimiento), introduzca el espesor de la chapa y la intensidad de corte adecuada.


Pase al modo DRY RUN (Prueba en vacío).



Etapa 2

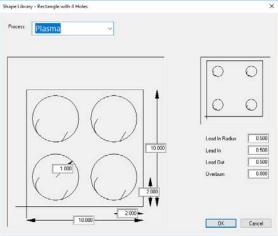
Active LASER (láser). El botón tendrá un color VERDE. El cabezal descenderá hasta la posición correspondiente y el láser se encenderá.

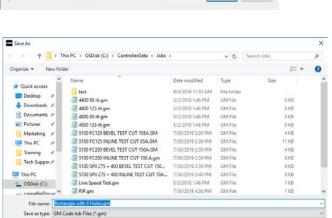

Etapa 3

Desplace el cabezal y utilice el indicador para definir el PLATE ORIGIN (Origen de la chapa), ajustar la alineación de la chapa, ejecutar un trabajo de prueba en vacío o visualizar un punto en la placa.

Etapa 4

¿Una vez que haya terminado de usar el láser, póngalo en OFF. Al pasar al modo ACTIVE RUN, el láser se apaga automáticamente. En VMD, puede utilizar una de las 36 formas estándar sin necesidad de generarlas en su programa de CAD.





Access the Shape Library:

Para acceder a la biblioteca de formas, pulse SHAPE LIBRARY en el centro de la parte superior de la pantalla de VMD. La biblioteca de formas incluye las 36 formas más habituales. Sus dimensiones, la entrada y la salida, la velocidad de avance y las herramientas pueden personalizarse.

Seleccione la forma deseada y pulse OK. Esto abrirá la herramienta de configuración de forma de la forma seleccionada.

A Hide Folders

Save Cancel

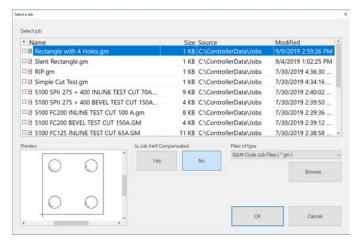
Configurar la forma:

En primer lugar, debe seleccionar la herramienta que va a utilizar. Plasma, marcador de placa, u Oxi.

<u>Lead In Radius</u> permite crear un radio para la entrada. Si se requiere una entrada de cable, indique 0.

<u>Lead In</u> es la longitud del movimiento del punto de perforación en la trayectoria de la herramienta. Por lo general será de 0,12.

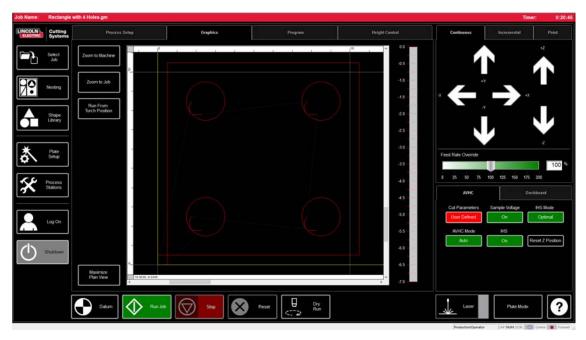
<u>Lead Out</u> es la longitud del corte creado fuera de la trayectoria de corte. Si utiliza el plasma, indique 0.


Overburn es la longitud medida tras el punto de fin/ entrada. Se utiliza para los materiales de mayor espesor o para el proceso oxi.

Cuando haga clic en OK, se le pedirá que guarde (SAVE) su forma. Haga doble clic en la carpeta JOBS. El nombre del archivo predeterminado será la forma que ha seleccionado, aunque puede modificarse para utilizar una nomenclatura definida por el usuario. Una vez que haya dado nombre a la forma, pulse SAVE.

VMD cargará la tarea para activarla y pasará a «NO KERF».

Guía de usuario


Abrir Shape en VMD:

En la pantalla MAIN (principal), pulse SELECT JOB. De este modo se abrirá la pantalla de selección del proyecto. Seleccione el proyecto en la lista. Si no ha guardado la forma en la carpeta JOBS, deberá pulsar BROWSE y localizar su trabajo.

¿ESTÁ COMPENSADO EL TRABAJO? Las piezas de la BIBLIOTECA DE FORMAS <u>no son adecuadas</u> para la compensación de KERF. <u>Seleccione</u> NO y se añadirá la sangría en función del espesor del material de la pieza.

En las tareas programadas de VMD Nest y TMCAD, SELECCIONE SÍ.

Una vez seleccionado, pulse ON. El trabajo aparecerá en la pantalla GRAPHICS.

Cuando tenga un archivo en formato GM para ejecutar o una forma generada en **VMD** lista para el corte, un procedimiento sencillo permite realizar el trabajo a través de **VMD**. De este modo se abordará el flujo de trabajo de la ejecución del proyecto.

Cuando inicie Visual Machine Designer por primera vez y se conecte al controlador Accumove, deberá cargar la configuración de la máquina y encender los motores. Aparecerá una pantalla indicando PLEASE SWITCH DRIVES ON. Pulse HIDE y, a continuación, pulse DATUM en la esquina inferior izquierda. La antorcha se desplazará hasta los límites de la máquina y establecerá el punto cero (MACHINE ZERO).

Abrir un proyecto:

Una vez establecido el punto cero (MACHINE ZERO), es el momento de abrir un proyecto y prepararlo para el corte. Pulse SELECT JOB y localice su archivo.

Configurar el procedimiento:

En la pestaña PROCESS SETUP (Configuración del procedimiento), introduzca el espesor del material y la intensidad de corte prevista. De este modo se sustituirán los PARÁMETROS DE CORTE por los parámetros predeterminados para la combinación espesor/corriente.

<u>Si utiliza</u> un parámetro de espesor del material diferente del que se va a

cortar, el resultado no estará conforme con las especificaciones.

Plate Setup (Configuración de chapa):

Pulse PLATE SETUP. Utilice las teclas de desplazamiento de PLATE SETUP para desplazar el cuerpo de la antorcha a la esquina inferior izquierda de la chapa a cortar.

Pulse SET PLATE ORIGIN. De este modo se fijan el PROGRAM ZERO (Programa cero) del programa o las coordenadas absolutas (X = 0: Y = 0) del programa.

Pulse CLOSE (Cerrar).

En la parte inferior de la pantalla, pase al modo DRY RUN (Prueba en vacío). Pulse RUN JOB. Esto «simulará» el programa cargado sin activar la antorcha de plasma.

Si está satisfecho con la prueba en vacío y los movimientos de la máquina, pase del modo DRY RUN al modo ACTIVE RUN para poner en marcha el programa cargado.

Pulse RUN JOB.

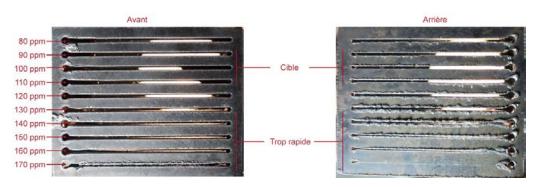
Si cree que la máquina se desplaza con demasiada rapidez para el material, puede modificar la velocidad de avance con la barra de desplazamiento FEED RATE OVERRIDE%.

El cursor se encuentra de forma predeterminada en 100 %. Para reducir este porcentaje, desplace el cursor hacia la izquierda. Para incrementar la velocidad de avance, desplace el cursor por encima del 100 %.

Prueba de velocidad lineal:

El objetivo es optimizar los cortes obtenidos en la mesa. De este modo, la acumulación de escorias en la parte inferior de la pieza y el bisel en los bordes de la misma serán mínimos.

Suministramos un archivo de corte para controlar el caudal de alimentación para el material a cortar con el amperaje de alimentación. LINE SPEED TEST está en la lista de proyectos y debe ejecutarse con cada uno de los espesores de material a los amperajes especificados en el cuadro de corte para proporcionarle señales visuales en la salida. La prueba de corte es una pieza de 76,2 mm x 101,6 mm compuesta por 9 líneas. Cada línea está programada para funcionar a velocidades diferentes y mostrar los efectos que puede tener la velocidad en la calidad del corte.


Con el porcentaje FEED RATE OVERRIDE % en 100, la primera línea corta a 4,3 m/min y baja 10 ipm en cada línea hasta la última línea, que se realizará a 80 ipm; el perímetro exterior es de 100 ipm. Si el porcentaje FEED RATE OVERRIDE % se fija a 50, las líneas van de 85 a 40, siendo el exterior 50. Compruebe en el cuadro de cortes el amperaje y el espesor del material. Modifique el valor PROGRAM FEEDRATE OVERRIDE % si necesita un caudal de alimentación más o menos elevado en función del espesor del material y el amperaje de alimentación.

- · Cargue el archivo LINE SPEED TEST.gm.
- Introduzca los parámetros AVHC según lo indicado en el cuadro de cortes.
- Desplace el cabezal hasta la esquina inferior izquierda. Ajuste el punto PROGRAM ZERO.
- Inicie la prueba de velocidad lineal (LINE SPEED TEST).

Una vez finalizada la prueba, se deberán comprobar algunos elementos. En la parte superior del corte es deseable obtener un corte limpio sin un bisel excesivo. Lo ideal es mantener la anchura de la guía de corte de la parte superior a la inferior.

En la parte posterior, puede observar el ancho del corte y la acumulación de escorias. La clave está en las líneas 3 y 4, que tienen menos escorias. La retirada de las escorias también debería resultar sencilla. En general, la velocidad óptima corresponde al extremo superior de las tres líneas que están relativamente limpias. Las líneas rectas tendrán un corte relativamente limpio, pero «el interior» de los cortes se realizará a una velocidad reducida debido a la naturaleza del movimiento y la mecánica de la máquina. Con estos tres elementos, sabe que el interior estará tan limpio como la línea recta.

Corte de la Line Speed Test:

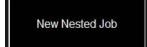
Por tanto, en este ejemplo, una velocidad de 110-90 ipm será la más adecuada para el espesor del material y el ajuste del amperaje. Este procedimiento se utilizará para cada espesor de material que vaya a cortar con el fin de establecer la velocidad adecuada. Una vez establecidos, estos valores pueden recogerse en un cuadro de cortes visual, o también puede utilizar la hoja suministrada para anotar los parámetros.

Desarrolle su propio cuadro de cortes

Utilice este modelo para crear su propio cuadro de cortes personalizado con ayuda de la prueba de velocidad lineal.

Espesor del ma- terial Tipo	Amperaje	Velocidad de corte	Periodo de per- foración	Altura de perforación	Altura de corte
·					

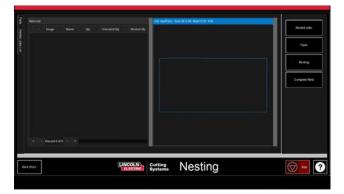
VMD le permite anidar piezas irregulares. De este modo podrá importar archivos DWG y DXF sin necesidad de disponer de un programa de CAM externo para generar un código g correcto. La ANIDACIÓN aplicará la corrección de la guía de corte y el valor Lead In en todas las funcionalidades. Esta generará la anidación más ajustada posible para el tamaño del material introducido.



Para empezar, haga clic en el botón NESTING y aparecerá NESTED JOB LIST en pantalla.

Para iniciar una nueva anidación, pulse NESTED JOBS.

Seleccione NEW NESTED JOB y se abrirá el cuadro de diálogo ADD NESTED JOB.



En este cuadro de diálogo, introduzca un nombre para la anidación en el campo NESTED JOB NAME. Este será el nombre de archivo de su proyecto. Los siguientes cuadros de diálogo son listas desplegables.

Busque el espesor del material que desea cortar y el tamaño de la pieza.

Seleccione la mesa/herramienta de corte con plasma que utilice con el amperaje adecuado para la aplicación y pulse SAVE.

Se abrirá la lista ITEM LIST con la NEST LAYOUT (disposición de la anidación).

Para añadir piezas, vaya a la barra de herramientas de la derecha y pulse PARTS (piezas). De este modo se abrirá la lista de piezas.

Seleccione IMPORT CAD DRAWINGS para los archivos DXF/DWG. Se abrirá el PART SELECTOR (selector de pieza).

Aplicar el itinerario de la herramienta:

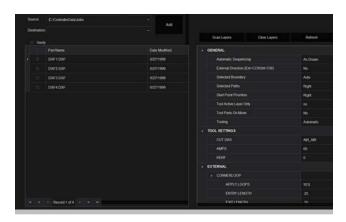
En la parte superior de la pantalla se encuentran FILE TYPE (tipo de archivo), SOURCE y DESTINATION.

File Type (Tipo de archivo): Cambia entre archivos de tipo DXF y DWG.

Source: Ubicación de la fuente del archivo (es decir, unidad flash, carpeta de trabajo).

Destination: Ubicación donde se guardarán los archivos. La carpeta predeterminada de VMD se encuentra en C: \ControllerData\Jobs.

Las dos casillas de verificación VERIFY y ARTWORK: VERIFY mostrará las piezas para ver las capas y otros detalles en las piezas individuales. ARTWORK cambiará el recorrido de la herramienta en recorrido de la herramienta ONLINE (En línea) y saltará los ajustes de sangrado.


A la derecha se encuentran las propiedades del trabajo **JOB PROPERTIES** que pueden aplicarse a sus piezas.

Las propiedades de importación (**IMPORTING PROPERTIES**) incluyen los cambios básicos de POST y de la importación del archivo.

Las propiedades de la herramienta (**TOOLING PROPERTIES**) incluyen la configuración del itinerario de la herramienta para la secuenciación, la corrección de la guía de corte y las entradas de cable. Modifique estos parámetros si necesita entradas o diámetros particulares para la guía de corte.

El mapa de capa (**LAYER MAP**) separa las capas del proyecto. Seleccione el proceso correspondiente para las capas PLASMA, PLASMA MARKING e IGNORE.

Realizar una anidación:

Cuando haya una cantidad adecuada de todas las piezas, vaya a la lista de la derecha y seleccione NESTING.

Pulse NEST para visualizar una ventana emergente que le pedirá que seleccione todas (ALL) las piezas o las piezas seleccionadas (SELECTED). Elija la opción que desee y pulse OK. De este modo se organizarán sus piezas en el material y se mostrará la disposición en la pantalla Job.

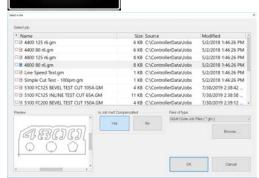
Finalizar la anidación:

Si la anidación no necesita ninguna edición o se trata de una única pieza, puede elegir en la barra de herramientas de la derecha COMPLETE NEST (finalizar la anidación). De este modo se abrirá el cuadro de diálogo CREATE JOB (crear un trabajo). Indique el lugar donde desea guardar el trabajo y compruebe el amperaje del corte. A continuación, pulse OK.

Abrir la anidación en VMD:

En la pantalla de anidación (NEST), en la parte inferior izquierda, pulse el botón BACK (RUN), que le llevará de nuevo a la pantalla VMD RUN. Después, para ejecutar la anidación, vaya a SELECT JOB y localice su archivo. En la pestaña AVHC, vaya de AVHC CUT CHARTS a CHARTS. En el archivo, los valores óptimos completarán automáticamente los parámetros de corte (CUT PARAMETERS) para el espesor del material y el amperaje indicados.

Trate y ejecute el archivo como un archivo normal.


Realización del primer corte de prueba

Hay varios archivos de prueba ya descargados en el ordenador de la **TORCHMATE™ 1020w-1530w** con fines de prueba y comprobación de la calidad del corte. Las pruebas LINE SPEED TEST y SIMPLE TEST CUT se proporcionan para ayudar a determinar la velocidad de corte correcta en pulgadas por minuto (IPM) para cortar el espesor de la chapa con el valor de corriente que ajustó en el generador. Los archivos 1530W-65A-5mm_V1.gm son cortes de prueba de calidad. Uno de estos se cortará en la fábrica antes de que la máquina salga de la línea de montaje para comprobar su funcionamiento antes del envío. Recomendamos encarecidamente que el primer corte sea 1530W-65A-5mm_V1.gm para comprobar que el estado de su máquina no se haya alterado durante el transporte. Localice la muestra de prueba de fábrica ubicada en la cubeta de agua y cargue una pieza de acero dulce de 5 mm para realizar una prueba de corte de comparación.

Para la TORCHMATE™ 1020w-1530w, use el archivo 1530W-65A-5mm V1.gm.

Select Job

Done to Notice

Si necesita apagar la máquina en cualquier momento, pulse el botón de parada en la pantalla táctil.

- 1. Gire el botón ESTOP un cuarto de vuelta.
- * Si aparece un reloj de WINDOWS, arrastre el dedo hacia la parte superior del monitor. Introduzca «cncop» en la línea de contraseña. Pulse la flecha en la línea.
- 2. Una vez que el ordenador esté en marcha, el programa Visual Machine Designer se ejecutará automáticamente.
- 3. Pulse DATUM para volver a la posición inicial de la máquina.
- 4. En la pestaña PROCESS SETUP (Configuración del procedimiento), introduzca el espesor del material (5 mm) y el amperaje de los consumibles de plasma. **FLEXCUT™ 125 CE** 65 amp. Esto cargará los parámetros de corte con los parámetros adecuados en función de los cuadros de corte.
- 5. Pulse SELECT JOB.
- 6. Localice el archivo 1530W-65A-5mm_V1.gm. Dado que el archivo se ha dibujado a través de una herramienta, en IS KERF COMPENSATED? Seleccione SÍ y pulse OK.

El resto de ficheros xxxR6.gm corresponden a instalaciones distintas de TORCHMATE™ 1020w-1530w - FLEXCUT™ 125 CE.

- 7. Pulse PLATE SETUP. Utilice las teclas de desplazamiento para desplazar el cabezal de la antorcha a la parte inferior izquierda de la chapa que se vaya a cortar.
- 8. Pulse SET PLATE ORIGIN. De este modo se fija el cero del programa (X = 0: Y = 0). Pulse CERRAR.
- 9. En la parte superior de la pantalla, pulse GRAPHICS para ver el archivo.
- 10. Pulse RUN JOB (la máquina puede producir chispas).
- 11. El corte se realizará del siguiente modo.
 - 1. Los círculos internos y los polígonos en primer lugar.
 - 2. A continuación se cortarán los números.
 - 3. El perímetro exterior.

Una vez completado el archivo de corte, compare la producción con el corte realizado en la mesa para comprobar los parámetros y la calidad del corte.

¡Enhorabuena por su primer corte!

Corte de 4400 80 R6.gm

Al igual que ocurre con todas las herramientas, esta máquina requiere un mantenimiento. En esta parte se abordarán las tareas diarias, mensuales y *ad hoc* necesarias para el mantenimiento de la **TORCHMATE™ 1020w-1530w** en buen estado de funcionamiento.

Mantenimiento diario

Alimentación eléctrica del plasma:

La alimentación eléctrica del plasma y el cuerpo de la antorcha deben someterse a control entre las mediciones de espesor del material y antes del corte. Retire los consumibles y compruebe si tienen que sustituirse. Aplique las siguientes indicaciones para determinar cuándo es necesario sustituir los consumibles.

Para acceder a las instrucciones completas de mantenimiento de la alimentación del plasma de la **FLEXCUT™ 125 CE** o de la **TOMAHAWK® 1538**, consulte el manual del propietario. Para obtener una copia del manual, póngase en contacto con el servicio de asistencia técnica de la **TORCHMATE™ 1020w-1530w**.

El aislador (solamente con FLEXCUT™ 125 CE):

El deslizamiento del electrodo en el aislador provoca el desgaste de este último. Cuando el electrodo ya no está bien sujeto, se debe cambiar el aislador. De lo contrario, existe riesgo de deterioro de la antorcha.

El electrodo: preste atención a la cantidad de hafnio presente en la punta. Cuanto más grande es el cráter en el electrodo, más desgastado está el electrodo. Reemplace el electrodo si la profundidad del centro es mayor de 0,06 pulgadas (1,5 mm). Además, compruebe si hay trenzas oscuras cerca de la punta del electrodo. Aunque estas marcas no se correlacionan con la vida útil del electrodo, indican la presencia de contaminantes en la alimentación de aire, tales como humedad excesiva o presencia de aceite.

El difusor deberá revisarse periódicamente para identificar posibles obstrucciones o grietas.

La boquilla es el consumible que se reemplaza con más frecuencia. Una de las señales de que se debe reemplazar la boquilla es la acumulación excesiva de escoria y el ángulo de bisel que aparece en los cortes. En la propia boquilla, constatará que un orificio más grande o un agujero de forma irregular serán signos de desgaste excesivo.

La cofia CTP es el consumible más duradero y solo deberá reemplazarse cuando la corrosión, obstrucción o grietas sean visibles físicamente.

La Tobera de protección cofia: sosténgala de cara a la luz y compruebe que ninguno de los agujeros esté bloqueado. Si lo están, reemplace la cofia. Estos agujeros permiten el escape de gas inerte y, cuando están taponados, pueden alterar la forma del arco de plasma y dar como resultado cortes imprecisos.

Cuando no se utilicen, recomendamos retirar los consumibles de la antorcha hasta el siguiente uso para prevenir la acumulación de corrosión en las clavijas.

Máguina:

El conjunto seguro contra impactos-antorcha consta de dos imanes y tres muescas que deben limpiarse de cualquier acumulación de escoria, ya que esto puede alejar el soporte de la antorcha lo suficientemente lejos del sensor y provocar la activación del seguro contra impactos de la antorcha.

Mueva la máquina a la posición de referencia y separe el soporte de la antorcha tirando de la antorcha desde abajo hacia la izquierda o hacia la derecha. La placa trasera ahora debería estar visible.

Utilice un trapo para eliminar los restos metálicos de los dos imanes o las tres muescas de ubicación.

Para montar la antorcha, primero alinee los bordes superiores del soporte de la antorcha, recolocando lentamente la antorcha en su posición de reposo.

Mantenimiento mensual:

Máquina:

A medida que el pórtico rueda sobre rieles lineales, deberá engrasar regularmente los patines presentes en este riel. Las acumulaciones de escoria y de polvo pueden impedir el buen funcionamiento de los patines y causar problemas con el pórtico que impiden que se mueva correctamente sobre los rieles. La grasa recomendada es la grasa de litio Mobil SHC Mobilith SHC 100. Puede comprarse en establecimientos locales.

Cargue el cartucho de grasa en una pistola de engrase y siga estos pasos para lubricar los raíles laterales.

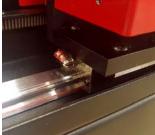
Etapa 1

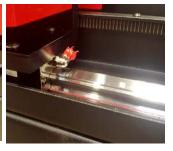
Con la máquina bajo tensión, mueva el pórtico hasta el centro de la mesa.

Etapa 2

Apague el controlador Accumove y afloje los pernos de cabeza hexagonal de 3,175 mm que sujetan la tapa lateral en su lugar, dando dos vueltas. NO RETIRE ESTOS PERNOS.

Deslice la tapa lateral para que los pernos puedan pasar por los agujeros y retire la tapa.




Una vez que se quita la tapa, los racores "zerk" serán visibles, fije la pistola de engrase y accione la bomba hasta que la grasa salga por la parte inferior del compartimiento. Engrase los racores "zerk" delantero y trasero.

Vuelva a colocar la tapa longitudinal.

Etapa 5

* IMPORTANTE * Deslice la tapa para que los pernos vuelvan a su posición original en la parte inferior del ojo de cerradura y apriete los pernos a 2 Nm.

Etapa 6

Repita las etapas 1 a 5 en el otro lado de la mesa.

Etapa 7

Retire las cubiertas laterales rojas del pórtico retirando los cuatro pernos de cabeza hexagonal de 3,175 mm en cada cubierta.

Etapa 8

Una vez retiradas las cubiertas, los racores "zerk" serán visibles. Fije la pistola engrasadora y accione la bomba hasta que la grasa salga del bolsillo donde el perno y el resorte entran en el montaje.

Etapa 9

Vuelva a instalar las cubiertas laterales del pórtico.

No vuelva a conectar la máquina a la tensión hasta que se hayan vuelto a colocar las tapa longitudinales; sin esto no es posible que la máquina vuelva a la posición inicial.

Mantenimiento ad hoc:

Este mantenimiento depende de la frecuencia de uso de la máquina. Si la máquina se utiliza una vez por semana, no será necesario aplicar las siguientes indicaciones con tanta frecuencia como con una máquina que funciona todos los días.

Fuelles:

Los fuelles son consumibles que protegen el interior del pórtico contra la escoria y el polvo. Cuando los fuelles ya no protegen el interior del pórtico, deben ser reemplazados. Póngase en contacto con el servicio posventa para adquirir fuelles nuevos.

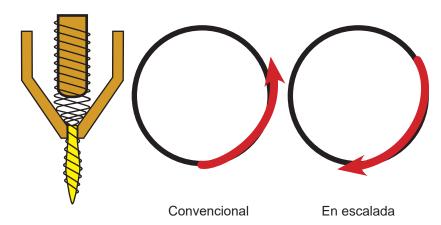
NOTA: La TORCHMATE™ 1020w-1530w se suministra con un destornillador corto adecuado. Para prolongar la vida útil del fuelle, no dude en desmontar el fuelle y volver a montarlo en cuanto se forme un falso pliegue.

43

Listones

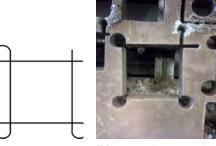
Con el tiempo, las pletinas de trabajo acumularán escoria, lo que creará una superficie de corte irregular y una mala continuidad en la mesa, lo que afectará directamente a la calidad del corte. En este caso, reemplace las pletinas de trabajo por nuevas pletinas de trabajo. El tamaño de las pletinas de trabajo utilizadas en las mesas de la **TORCHMATE**TM **1530w** es de 5 mm x 50 mm x 1650 mm y de 5 mm x 50 mm x 1230 mm para la **TORCHMATE**TM **1020w**. Si la máquina se utiliza para cortar principalmente en el frente de la mesa, otra opción consiste en hacer pivotar las pletinas de trabajo de atrás hacia adelante y viceversa. Limpie las pletinas de trabajo con una pulidora y voltee las pletinas de trabajo para prolongar su uso.

Depósito de agua


El agua del depósito debe vaciarse y el depósito debe limpiarse cada 2 a 4 meses. En la parte posterior izquierda de la mesa hay una válvula de fontanería de 12,7 mm. Para drenar el agua, póngase en contacto con las autoridades de la EPA o el departamento de aguas local. Una vez evacuada el agua, retire todos los fragmentos de metal y deséchelos conforme a las normas locales y federales. Cierre el grifo y vuelva a llenar la mesa de agua. La **TORCHMATE™ 1020w** puede contener 260 litros y la **TORCHMATE™ 1530w** 495 litros. **Lincoln Electric**® recomienda utilizar «Plateguard Red» como aditivo para el agua con el fin de evitar la formación de óxido y el crecimiento bacteriano.

Los compradores de productos de **LINCOLN ELECTRIC**® deben asegurarse de que los consumibles, los fluidos y las máquinas que hayan llegado al final de su ciclo se eliminen de acuerdo con las normas federales y locales.

- Los bordes biselados son provocados por el movimiento del gas de plasma al ser emitido a través de la boquilla. En el caso del corte con plasma, este fenómeno es inevitable. Una herramienta de corte con plasma de alta definición da lugar a un biselado menos pronunciado que una herramienta de corte estándar.
- Tanto la altura de la antorcha como la presión del aire, la calidad del aire, la dirección del corte y el estado de los consumibles influyen en el bisel.
- En los arcos de plasma que se utilizan para el corte, el gas forma un vórtice. Por ello, el arco tiene un sentido de rotación, lo que implica que un lado del corte tiene un bisel más marcado que el otro. Para reducir el bisel en la pieza se debe aplicar el sentido de avance correcto.
- Las direcciones de corte se denominan «convencional» y «en escalada». En el corte convencional, la
 antorcha gira en sentido contrario a las agujas del reloj en los cortes exteriores y en el sentido de las
 agujas del reloj en los cortes interiores. En el corte en escalada ocurre lo contrario, y permite obtener
 el mejor bisel.
- · Básicamente, el mejor bisel se obtiene a la derecha de la dirección del movimiento.



- Las esquinas pueden presentar un bisel más marcado que los cortes normales. Esto se debe a que la máquina pierde velocidad para realizar el cambio de dirección. En algunos casos, un amperaje inferior permite obtener velocidades de desplazamiento menores y reducir el bisel de «desaceleración» en las esquinas.
- Es posible que aparezcan ángulos afilados si se corta una forma más grande que sitúe la desaceleración y la aceleración de la máquina en una zona de desechos. Este corte se suele utilizar con frecuencia en materiales de mayor espesor, en los que el bisel de las esquinas aumenta de manera significativa.
- Para reducir el bisel, sustituya los consumibles con regularidad. Las puntas usadas o con acumulación de escorias pueden redirigir los flujos de aire y provocar la aparición de biseles aleatorios, así como una variación de la calidad de corte. A la hora de resolver posibles problemas, compruebe siempre los consumibles.
- Una de las formas más sencillas de reducir el bisel consiste en cortar a la velocidad y la altura adecuadas para el material y el amperaje.
- El aire suministrado a presión constante, limpio y seco también reduce el bisel.

Rizos en las esquinas

Cómo afecta la posición de la antorcha al bisel

Altura correcta de la antorcha Antorcha oblicua con Altura incorrecta de la Altura incorrecta de la Antorcha perpendicular al respecto al material antorcha antorcha material Antorcha muy alta Antorcha muy baja Posición de la antorcha durante el corte Bisel de la pieza terminada Bisel igual en todos los Bisel desigual Bisel excesivo Bisel invertido lados Un lado puede estar recto El corte no puede atravesar La antorcha puede entrar Bisel mínimo y el otro tener un biselado el material en contacto con el material excesivo y hacer saltar o dañar la Mayor vida útil de los punta consumibles Puede ser consecuencia de

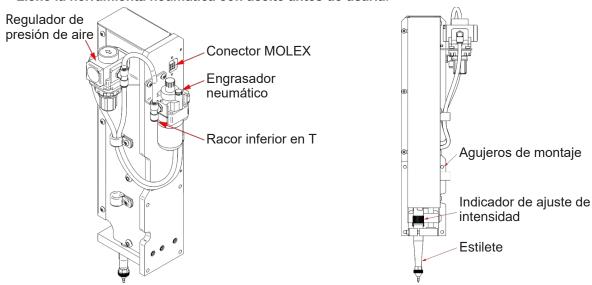
una punta usada

Qué provoca los cortes deficientes

- En los casos en los que el metal no se ha cortado por completo, pueden existir diversos problemas:
 - 1) La pinza de tierra no se ha fijado correctamente al material
 - 2) Caída o aumento de la presión de aire
 - 3) Presencia de humedad en el conducto de aire
 - 4) Caída de la alimentación
 - 5) Contacto de la antorcha con el material

(la mayoría de las herramientas de corte con plasma pasan a modo de baja potencia cuando entran en contacto con el material, lo que impide que el corte atraviese el material).

- Cuando la máquina empieza a desplazarse antes de que se complete una pieza, el corte no se termina.
 En tal caso, el tiempo de pausa o el periodo de perforación deben ajustarse para que haya tiempo suficiente para perforar el material.
- Cuando la trayectoria de un corte no vuelve al punto de partida, es posible que haya un deslizamiento mecánico o un contacto. En algunos casos será fácil determinar qué eje pierde la posición. Examine el eje en cuestión para identificar posibles acumulaciones u obstrucciones que puedan provocar el contacto.



Opción marcador: Instalación y configuración del marcador

El marcador es una herramienta de grabado oscilante neumática. Se alimenta de aire. El aire suministrado activa una serie de cilindros neumáticos y un solenoide que se activa a través de la interfaz de mando del controlador **Accumove**.

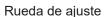
El marcador requiere una presión de aire mínima de 6 bares y consumirá aproximadamente 1,7 m³/h a 6 bares. La velocidad de avance de funcionamiento normal del marcador de placa está comprendida entre 750 y 1800 mm/min.

- Se recomienda probar el marcador de placa para encontrar los mejores ajustes de oscilación y velocidad de avance para el material a marcar.
- El estilete tiene un ajuste de intensidad; estos parámetros controlan la oscilación del estilete y el intervalo 1-5 y off. No ajuste nunca el ajuste de intensidad cuando el marcador de placa esté activado.
- Siga siempre las instrucciones de seguridad descritas en el manual del usuario de su máquina.
- · No es necesario retirar el conjunto de la antorcha para la instalación del marcador de placa.
- El engrasador neumático no se llena con aceite para herramientas neumáticas antes del envío. Llene la herramienta neumática con aceite antes de usarla.

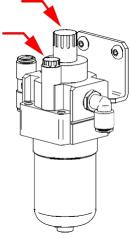
Desembalaje:

Retire el marcador de placa del embalaje y compruebe el contenido:

- El marcador ensamblado.
- Conjunto de conexión neumática.
- Aceite neumático (aproximadamente 0,12 litros).
- 4 tornillos de cabeza hueca (utilice los tornillos suministrados con la máquina)


Herramientas necesarias:

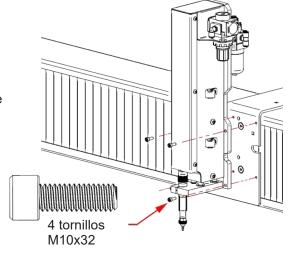
- · Ilave Allen
- Destornillador de cabeza plana
- Fijador de roscas


Llenado del engrasador neumático:

El engrasador neumático en línea distribuirá la cantidad correcta de lubricación a los componentes internos del estilete. Utilice aceite para herramientas neumáticas disponible en el mercado.

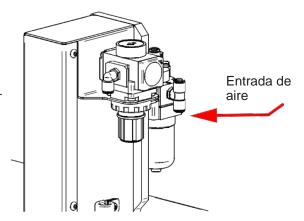
- Localice el engrasador neumático en la parte posterior del conjunto marcador.
- Retire el tapón de llenado.
- 3. Llene entre 0,02 y 0,04 litros de aceite
- 4. Vuelva a colocar el tapón de llenado
- 5. Gire la rueda de ajuste completamente en el sentido de las agujas del reloj. A continuación, gire la cabeza del tornillo entre 1 y 2 vueltas. Esto aplicará la lubricación adecuada al estilete. Si sale aceite de la punta del estilete, gire la cabeza del tornillo 1 vuelta.

Tapón de llenado


Mueva el pórtico hacia la parte delantera de la mesa y desconecte el **ACCUMOVE**® de la tensión.

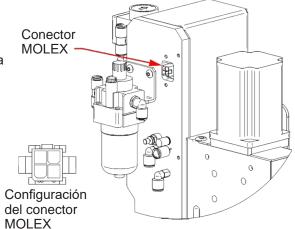
Desconecte el racor de aire en la parte posterior de la alimentación de plasma.

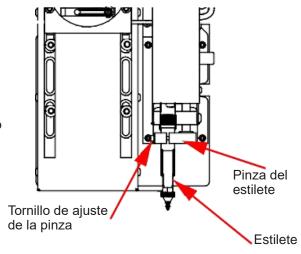
Apague su compresor de aire y purgue los conductos de aire.


Etapa 2

A la derecha de la antorcha de corte hay 4 agujeros para el montaje del marcador. Alinee el marcador con los 4 agujeros y apriete el conjunto con los 4 tornillos (utilice fijador de roscas). Es recomendable comenzar por la esquina inferior derecha para fijar el marcador.

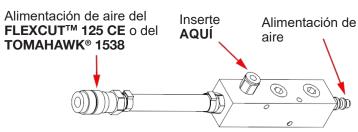
Etapa 3

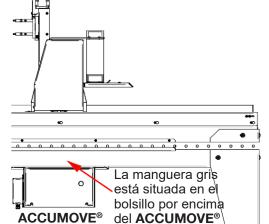

Conecte la alimentación neumática al conector en "T".


Etapa 4

Localice el cable 2x2 MOLEX a la salida de la cadena portacables.

Enchufe el cable en el conector hasta que escuche un "clic". Tenga cuidado, el conector solo puede ir en una dirección. **No fuerce el conector**. Cuando está alineado correctamente, el conector debe entrar fácilmente.

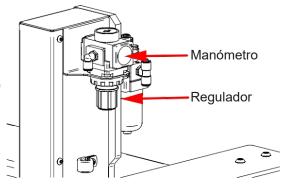


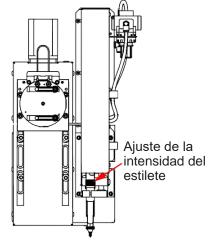

Compruebe que el estilete esté fijado en la pinza. Si el estilete está flojo, apriete el tornillo de ajuste.

Etapa 6

Debajo de la máquina, encima del **ACCUMOVE®**, se encuentra la cadena portacables de la máquina. Localice la manguera de aire comprimido y conéctela a la entrada de aire de la máquina.

Etapa 7


Conecte las mangueras de aire


Etapa 8

Encienda el compresor de aire y compruebe que no haya fugas de aire. La presión del aire no debe superar los 8,3 bares.

Etapa 9

Ajuste el regulador del marcador con una presión comprendida entre 0,34 y 0,69 bares. Esta presión deberá ajustarse durante el ajuste del OFFSET más adelante en el proceso de ajuste.

Ponga la intensidad del estilete en la posición de parada.

Etapa 11

Encienda el **ACCUMOVE**[®] e inicie el software **VMD** en el ordenador de la máquina. Pulse "DATUM" y mueva la antorcha sobre la mesa.

Haga clic en el botón "Tool Library". Esta acción abrirá un nuevo menú que muestra dos herramientas:

- Herramienta de plasma
- Herramienta de marcador

Etapa 12

Haga clic en el botón de activación del marcador

Etapa 13

Active y desactive el marcador de 3 a 4 veces para asegurarse de que el marcador funciona correctamente.

Ajuste el movimiento y la velocidad adecuados actuando sobre el regulador.

Etapa 14

Defina los parámetros **FLEXCUT™ 125 CE** o del **TOMAHAWK® 1538** y máquina en función del material utilizado.

Mueva la antorcha sobre la chapa y haga clic en "Set Program Zero".

Esto colocará la **TORCHMATE™ 1020w-1530w** en la posición inicial de la máquina y permitirá la alineación del marcador para las siguientes etapas

Compruebe que se muestre "Active Run" o que la antorcha no se encienda.

Haga clic en el botón Activar el plasma. Esto iniciará el control de la altura para que la instalación de plasma perfore la chapa. Una vez que se perfora la chapa, desactive el plasma para apagar la antorcha.

Etapa 16

Sitúe el marcador en el agujero realizado anteriormente.

Ajuste la ubicación usando las teclas de desplazamiento del **VMD**.

Una vez que el estilete esté cerca de la ubicación de la perforación, cambie el modo de desplazamiento "Continuo" a "Incremental". Esto permitirá ajustes más precisos.

Ajuste usando las teclas de desplazamiento hasta que el estilete caiga en el agujero.

En el modo incremental, la máquina moverá el pórtico en un paso incremental definido cada vez que se presionen las teclas de desplazamiento.

Etapa 17

Una vez que la punta del estilete haya caído en el agujero de perforación, haga clic en el botón "Set Offset" situado en la fila de marcadores. Esto definirá automáticamente la distancia de compensación entre el marcador y el cuerpo de la antorcha de plasma. Al realizar un trabajo con múltiples herramientas, el controlador moverá esta compensación antes de activar el marcador. La máquina almacenará los datos de compensación de la herramienta hasta que se realice un restablecimiento de fábrica en la máquina.

Etapa 18

Desactive el marcador. El marcador se mueve a su posición original.

Reparación básica de averías

Este apartado recoge los fallos operativos básicos que podrían producirse en su máquina **TORCHMATE™ 1020w-1530w**.

Errores de la máquina:

Problema	Solución
Un motor no gira cuando la máquina entra en modo DATUM "Prise Origine Machine)	Conéctese como ADMIN. Vuelva a cargar la configuración. Pulse OK. Realice el DATUM de la máquina. Si el problema continúa, póngase en contacto con el servicio de asistencia al cliente.
Viga en tensión durante la ejecución de piezas.	Engrase los patines de los rieles. Si el problema continúa, póngase en contacto con el servicio de asistencia al cliente.
Los cortes no son perpendiculares o presentan una calidad inferior a la habitual.	Compruebe los consumibles de la antorcha de plasma así como los parámetros del cuadro de corte. Compruebe que la antorcha esté perpendicular a la chapa sobre la mesa.

Errores del programa:

Problema	Solución
	Compruebe que el cable óhmico naranja esté conectado al terminal de la antorcha.
Durante la fase de detección de altura inicial "IHS", el indicador "detección óhmica" no indica un estado de detección amarillo cuando la antorcha entra en contacto con el material.	Compruebe que la superficie del material esté libre de óxido o corrosión que puedan impedir un contacto eléctrico con la protección.
	Consulte la guía de resolución de problemas de "Detección óhmica".
	Retire la cofia CTP del cuerpo de antorcha e inspeccione/limpie los consumibles de cualquier escoria, y vuelva a colocarlos cuando estén limpios.
Durante la fase de detección de altura inicial, la antorcha no desciende y no detecta material, sino que enciende la antorcha en el aire.	Compruebe en la configuración del trabajo (Job Setup) que la detección óhmica esté activada.
	Compruebe en la configuración del trabajo (Job Setup) que el modo IHS esté ajustado a Siempre (Always).
	Compruebe que el cable óhmico naranja esté conectado al terminal de la antorcha.
Error «IHS Failure: Check VFC Ground»	Compruebe que la superficie del material esté libre de óxido o corrosión que puedan impedir un contacto eléctrico con la protección.
	Consulte la guía de resolución de problemas de "Detección óhmica".
Error «IUS Ecilure: Clear alag from concumables»	Retire la cofia CTP del cuerpo de antorcha e inspeccione/limpie los consumibles de cualquier escoria, y vuelva a colocarlos cuando estén limpios.
Error «IHS Failure: Clear slag from consumables» sin que la antorcha esté en contacto con la superficie del material.	Reemplace los consumibles con elementos nuevos, incluida la cofia CTP.
	Compruebe el cable óhmico naranja y la puesta a tierra.
	Compruebe que la velocidad programada en el código ISO y el porcentaje de exceso de velocidad sean correctos.
La antorcha perfora el material, pero no se produce ningún movimiento.	Compruebe que la antorcha tenga suficiente material en el punto de perforación para que el plasma pueda establecer un arco de corte a plena potencia.
	Compruebe que el cable de entrada Aux esté conectado a la parte posterior del controlador ACCUMOVE [®] .

Errores del programa: (continuación)

Problema	Solución
Durante el desplazamiento de la antorcha para el primer corte, la punta de la antorcha entra en contacto con el material y detiene la máquina.	Compruebe que la altura de corte esté ajustada al valor correcto. Compruebe que el modo AVHC auto/manual esté en Auto. Compruebe que el modo "Sample voltage" esté ajustado en ON. Compruebe si, en el punto de parada de la máquina, la máquina pasa por un corte anterior o choca con
	escorias de un corte anterior.
	Compruebe que la altura de corte esté ajustada al valor correcto.
	Compruebe que el modo AVHC auto/manual esté en Auto.
Durante el corte, la antorcha se retrae lo suficiente del material y el arco se estira o se extingue.	Compruebe que el modo "Sample voltage" esté ajustado en ON.
	Compruebe la conexión del cable de medición de tensión del arco entre la caja VFC y el generador de plasma.
	Compruebe que el botón Dry Run/Active Run indique Active Run.
La antorcha traza los contornos de la parte pero no se enciende.	Compruebe que la opción OK to Move esté activada en el panel de control de la máquina.
	Si la opción OK to Move está desactivada, compruebe los errores indicados en el generador de plasma.
	Cierre por completo el programa VMD , apague el controlador ACCUMOVE® durante al menos 30 segundos.
La pantalla VMD muestra el mensaje «Accumove	A continuación, encienda el controlador Accumove, espere 30 segundos y abra el programa VMD .
Controller Not Connected» más de 30 segundos.	Compruebe que el cable Ethernet rojo esté conectado al ordenador y al controlador ACCUMOVE® .
	Compruebe que el cable Ethernet rojo esté conectado al puerto derecho o ultraperiférico de los controladores Accumove 2.

Problema	Solución
	Compruebe que la línea de sujeción del seguro contra impactos de la antorcha y que ninguna escoria en el imán impidan que la antorcha se sitúe correctamente y por completo.
El indicador del seguro contra impactos de la antorcha es amarillo y aparece como no conectado, incluso si la antorcha está en la posición correcta.	Compruebe los puntos de contacto en busca de signos de corrosión, límpielos y lubríquelos para asegurarse de que el seguro contra impactos de la antorcha funcione correctamente.
	Compruebe que el cable del seguro contra impactos de la antorcha esté conectado al seguro contra impactos de la antorcha y, en la parte posterior del controlador ACCUMOVE® , vuelva a instalarlo si es necesario.
Durante la vuelta a la posición inicial de la máquina en modo Datum, la máquina se desplaza hasta los topes mecánicos con un ruido de "gruñido" de los motores.	Compruebe que el haz de entrada esté bien conectado a la parte posterior del controlador (ACCUMO-VE ® 2).
La antorcha no se retrae durante el desplazamiento entre cortes, pero se detiene automáticamente.	Mueva el eje Z hasta el final de su recorrido y haga clic en Reset Z, después haga clic en Run Job (realizar el trabajo).
entre cortes, pero se detiene automaticamente.	Compruebe que el valor de la altura de retracción esté ajustado a la altura de retracción deseada entre cortes.
A mitad de la trayectoria de un programa, se supera	Durante la ejecución de un programa, el sistema determinará si la línea siguiente de código g mantiene o no la máquina en sus márgenes de funcionamiento normales. Si aparece este mensaje, el programa es demasiado voluminoso para ejecutarse en la máquina con la posición inicial cero actual.
un límite en el eje X o Y.	Compruebe la posición inicial del punto Program Zero. Utilice el panel de visualización para comprobar si la pieza supera los límites de la máquina y ajuste la posición cero o el punto programado según corresponda.
	Compruebe la conexión del cable de trabajo de la herramienta de corte con la máquina.
La antorcha se transfiere sobre la chapa, pero no la perfora por completo, no se produce ningún movimiento.	Compruebe que la chapa a cortar esté en contacto con las pletinas de trabajo de la mesa y que nada impida esta conexión.
	Compruebe que la altura de perforación se haya fijado según los valores recomendados y no fuera de los parámetros y visualmente en la máquina.

Errores del programa: (continuación)

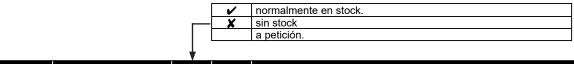
Problema	Solución
El controlador no se enciende (ACCUMOVE® 2).	Compruebe que la alimentación 24 VDC esté conectada e indique una luz LED azul. Compruebe que la alimentación esté conectada correctamente en la parte posterior del controlador ACCUMOVE® 2. Compruebe que la parada de emergencia esté desactivada.
El controlador tiene un indicador de alimentación que parpadea (ACCUMOVE ® 2).	Una entrada está cortocircuitada en la conexión a tierra; desconecte el haz de cables del disyuntor, del control de la altura y de la entrada y compruebe qué conexión provoca el parpadeo de la luz. Resuelva el cortocircuito.
La pantalla VMD muestra el mensaje de error «Please update the firmware».	El firmware descargado actualmente en el controlador no es la versión correspondiente a este programa. Conéctese como Admin y cargue el firmware en los ajustes de la máquina, pestaña Advanced. Siga las instrucciones que aparecen en pantalla.
Uno de los motores de la máquina no se mueve cuando trata de activar el modo DATUM o hace avanzar la máquina.	Apague el controlador ACCUMOVE® y compruebe que todas las conexiones del cable del motor estén en su lugar correcto en la parte posterior del controlador ACCUMOVE®, así como en cada motor. Active el controlador Accumove y abra el programa VMD durante 30 segundos. Abra una sesión como administrador, haga clic en el botón de configuración de la máquina y a continuación seleccione Cargar configuración. Escoja el archivo de configuración adecuado a su máquina y haga clic en OK. Reinicie el controlador y el software VMD.

Problema	Solución
El trabajo aparece inclinado o girado en la pantalla del Plano de trabajo.	Compruebe que la placa esté bien alineada según el punto cero del programa en la esquina inferior izquierda; a continuación, seleccionando Align Corner, haga avanzar ligeramente el eje Y positivo y haga clic en Alinear los bordes. La máquina volverá a la posición cero. Vuelva a la selección de proyecto (Select Job) y abra de nuevo el proyecto.
	Si la pieza no se muestra correctamente, el problema está presente en el archivo de g-code (código ISO) y debe volver a crearse correctamente.
Al utilizar la anidación de línea y de columna en el programa VMD, el valor de recuperación no se	Vuelva a poner la máquina en posición datum, cierre el programa VMD y apague el controlador ACCU-MOVE ® durante 30 segundos.
ajusta correctamente.	Encienda el controlador ACCUMOVE ®, espere 30 segundos y abra el programa VMD .
	Compruebe que el indicador del seguro contra impactos de la antorcha en la pantalla principal muestre Not Connected (no conectado) y que sea de color amarillo.
El error «Execution Error External Pause» aparece cuando hace clic en el botón Run Job (ejecutar el trabajo).	Vuelva a instalar la antorcha en el seguro contra impactos de la antorcha hasta que el indicador sea gris e indique Connected (conectado).
	Verifique que el cable del seguro contra impactos de la antorcha esté firmemente en su lugar en la unidad y en la parte posterior del controlador ACCUMOVE ®.
El error «Execution Error Overtravel Detected» se produce cuando hace clic en el botón Run Job (ejecutar el trabajo).	Si está trabajando cerca de los fines de recorrido de la máquina, reinicie el programa a cero y mueva el material más allá de los límites de la máquina.
El error «Limit Exceed in Z-axis» se produce al eje-	Mueva el eje Z hasta el final de su recorrido superior y haga clic en Reset Z, después haga clic en Run Job (realizar trabajo) para continuar.
cutar un trabajo.	Si el indicador de detección óhmica se enciende cuando hace clic brevemente en Run Job (realizar trabajo) antes de que se muestre el error, retire los consumibles y límpielos de cualquier escoria.
La antorcha no purga el aire o se activa tras comple- tar una detección óhmica, el botón Stop se enciende y el indicador de Plasma se ilumina en verde en el	Compruebe la ausencia de códigos de error en el panel frontal del generador del FLEXCUT TM 125 CE o la ausencia de error en los indicadores LED de la cara frontal del TOMAHAWK® 1538.
cuadro de indicadores de VMD.	Compruebe que el cable de interfaz CNC esté conectado entre el generador y los controladores Accumove y caja VFC.

Errores del programa: (continuación)

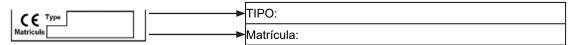
Problema	Solución
La antorcha se retira completamente hacia arriba	Limpie la superficie del material para eliminar cual- quier corrosión que pueda obstaculizar el proceso de detección óhmica.
tras la detección óhmica del material, y el botón Run Job (ejecutar el trabajo) pasa a estar disponible.	Compruebe que el haz de antorcha no esté retenido en la trayectoria hacia la superficie del material.
	Compruebe que la antorcha no empuja contra la chapa desviándola antes de detenerse y retraerse.
	Compruebe que las alturas de perforación y corte estén ajustadas a los valores recomendados.
La antorcha choca con el material después de 2 cm de corte.	Compruebe que el modo de control de la altura esté en Auto y no en Manual (manual).
La antorcha realiza un corte demasiado alto por encima de la chapa a cortar.	Compruebe que la función "Sample Voltage" esté ajustada en ON.
	Compruebe la presencia de escoria cerca de los puntos de perforación que podría interferir con la detección de chapa por la antorcha.
	Compruebe que el modo de control de la altura esté en Auto y no en Manual (manual).
	Compruebe que la función "Sample Voltage" esté ajustada en ON
La antorcha no parece mantener una altura regular de corte sobre el material que se deforma.	Si la pieza presenta una geometría muy compleja, el sistema puede entrar en un Modo de bloqueo duran- te periodos de tiempo prolongados.
	Conéctese como administrador, vaya a los parámetros de la máquina y en la pestaña Basic, modifique la distancia hasta la esquina a 6,35.

Cómo hacer pedidos:


Las fotos o croquis muestran casi todas las partes de una máquina o instalación.

Las tablas descriptivas contienen 3 tipos de elementos: artículos que normalmente se mantienen en stock: ✔ artículos que no están en stock: ✔ artículos a petición: sin referencias

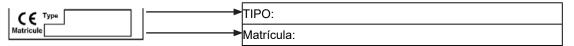
(Para estos, aconsejamos que nos envíen una copia de la página de la lista de piezas debidamente cumplimentada. Indicar en la columna Pedido el número de piezas deseadas y mencionar el tipo y el número de matrícula de su aparato.)


Para los elementos marcados en las fotos o en los croquis y no incluidos en los cuadros, envíenos una copia de la página en cuestión y destaque la marca en cuestión.

Ejemplo:

Rep	Ref.	Stock	Pedido	Designación	
E1	W000XXXXXX	/		Tarjeta interfaz máquina	
G2	W000XXXXXX	X		Caudalímetro	
А3	P9357XXXX			Panel frontal serigrafiado	

• Si pide piezas, indique la cantidad y anote el número de su máquina en el recuadro a continuación.



/	normalmente en stock.
 X	sin stock
	a petición.

Rep	Ref.	Stock Ped	dido Designación
1	AS-CS-07007220	V	Motorreductor transversal
2	AS-CS-07007200	V	Motorreductor longitudinal
3	AS-CS-07007164	V	Fuelle TORCHMATE™ 1020w-1530w (x2)
4	AS-CS-101-2000-00	~	Portaherramientas «Generación 2» - toma XLR
5	AS-CS-101-5000-14	~	Seguro contra impactos de la antorcha "Generación 2" antorcha LC100M
	AS-CS-101-5000-15	•	Seguro contra impactos de la antorcha "Generación 2" antorcha LC125M
6	AS-CS-07056138	'	Láser cruz M12 verde
	AS-CS-101-4005-00	'	Lente sin pantalla - M16x1,5
7	AS-CS-101-1100-04	~	Cable de interconexión del seguro contra impactos de la antorcha + fin de recorrido eje Z
8	BK1250-200050	/	Controlador ACCUMOVE® 2
	AS-CS-400-0003-02	/	Alimentación 24VDC - 160 W para ACCUMOVE®
9	BK1250-200013	/	PC LINC-CUT® (según la versión: el PC no tiene interruptor)
	AS-CS-103-0005-02	V	SHUTTLE PC (según la versión: el PC tiene interruptor)
10	AS-CS-07007331	'	Cable HDMI
11	AS-CS-400-0014-00	'	Alimentación PC 12VDC
12	AS-CS-101-1100-05	/	Caja de regulación de altura
13	AS-CS-07007316	/	Pantalla táctil 22"
14	AS-CS-181-2015-00	'	Detector inductivo
15	TMS-181-2037	/	Haz «pulpo» TORCHMATE™ 1020w
	AS-CS-07007310	/	Haz «pulpo» TORCHMATE™ 1530w
16	K4401-15	✓	Cable interfaz ACCUMOVE® - generador - 5 metros
17	AS-CS-213-1000-12	✓	Marcador neumático (opción)
18	BK-TMS-213-1000-02	/	Punta marcador neumático (opción)
19	AS-CS-07007145	'	Conjunto de protección arco de plasma
20	AS-CS-07007167	'	Persiana de protección
	AS-CS-07007140	'	Lote 2 patines para riel viga TORCHMATE ™
	AS-CS-07007141	'	Lote 4 patines para riel viga longitudinal TORCHMATE™
	AS-CS-07007360	/	TOMAHAWK® 1538 automático
	AS-CS-07007361	'	Antorcha LC100M - 7,5 metros para TOMAHAWK® 1538

Si pide piezas, indique la cantidad y anote el número de su máquina en el recuadro a continuación.

LINCOLN ELECTRIC® se especializa en la fabricación y la venta de equipos de soldadura, consumibles y equipos de corte de gran calidad.

Nuestro reto es responder a las necesidades de los clientes y superar sus expectativas. En ocasiones, los compradores solicitan a **LINCOLN ELECTRIC**® información o asesoramiento sobre el uso de nuestros productos. Respondemos a los clientes utilizando la mejor información de la que disponemos en cada momento. **LINCOLN ELECTRIC**® no está en condiciones de ofrecer garantía alguna para estos consejos y no asume ninguna responsabilidad en lo relativo a estas informaciones o consejos. Declinamos expresamente cualquier garantía, sea cual sea su naturaleza, incluidas las garantías de aptitud particular para los clientes, con respecto a estas informaciones o consejos. Como consideración práctica, no podemos asumir responsabilidad alguna sobre la actualización o la corrección de estas informaciones o consejos una vez que se han dado, y la comunicación de estas informaciones o consejos no puede ampliar ni modificar ninguna garantía relacionada con la venta de nuestros productos.

LINCOLN ELECTRIC® es un fabricante responsable, pero la selección y el uso de productos concretos vendidos por **LINCOLN ELECTRIC®** se realiza bajo el control único y es responsabilidad exclusiva del cliente. Son muchos los factores que escapan al control de **LINCOLN ELECTRIC®** e influyen en los resultados obtenidos al aplicar estos tipos de métodos de fabricación y requisitos de servicio.

Sujeta a modificación – Esta información es exacta según nuestros conocimientos en el momento de la impresión.

Para obtener información actualizada, consulte el sitio web www.torchmate.com.

NOTAS PERSONALES

LINCOLN ELECTRIC France S.A.S.
10 rue Lavoisier BP009
79200 Parthenay Cedex 01 www.lincolnelectriceurope.com
·